Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Electronic Structure and d–d Spectrum of Metal–Organic Frameworks with Transition-Metal Ions (2023)
Journal Article
Popov, I., Raenko, D., Tchougréeff, A., & Besley, E. (2023). Electronic Structure and d–d Spectrum of Metal–Organic Frameworks with Transition-Metal Ions. Journal of Physical Chemistry C, 127(44), 21749–21757. https://doi.org/10.1021/acs.jpcc.3c05025

The electronic structure of metal–organic frameworks (MOFs) containing transition metal (TM) ions represents a significant and largely unresolved computational challenge due to limited solutions to the quantitative description of low-energy excitatio... Read More about Electronic Structure and d–d Spectrum of Metal–Organic Frameworks with Transition-Metal Ions.

Chemical Kinetics of Metal Single Atom and Nanocluster Formation on Surfaces: An Example of Pt on Hexagonal Boron Nitride (2023)
Journal Article
Popov, I., Ghaderzadeh, S., Kohlrausch, E. C., Norman, L. T., Slater, T. J. A., Aliev, G. N., …Besley, E. (2023). Chemical Kinetics of Metal Single Atom and Nanocluster Formation on Surfaces: An Example of Pt on Hexagonal Boron Nitride. Nano Letters, https://doi.org/10.1021/acs.nanolett.3c01968

The production of atomically dispersed metal catalysts remains a significant challenge in the field of heterogeneous catalysis due to coexistence with continuously packed sites such as nanoclusters and nanoparticles. This work presents a comprehensiv... Read More about Chemical Kinetics of Metal Single Atom and Nanocluster Formation on Surfaces: An Example of Pt on Hexagonal Boron Nitride.

Recent Developments in the Methods and Applications of Electrostatic Theory (2023)
Journal Article
Besley, E. (2023). Recent Developments in the Methods and Applications of Electrostatic Theory. Accounts of Chemical Research, 56(17), 2267–2277. https://doi.org/10.1021/acs.accounts.3c00068

The review improves our understanding of how electrostatic interactions in the electrolyte, gas phase, and on surfaces can drive the fragmentation and assembly of particles. This is achieved through the overview of our advanced theoretical and comput... Read More about Recent Developments in the Methods and Applications of Electrostatic Theory.