Skip to main content

Research Repository

Advanced Search

All Outputs (13)

Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines (2024)
Journal Article
Liu, Y., Coles, N. T., Cajiao, N., Taylor, L. J., Davies, E. S., Barbour, A., …Kays, D. L. (2024). Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines. Chemical Science, 15(25), 9599-9611. https://doi.org/10.1039/D4SC01286K

The scission and homologation of CO is a fundamental process in the Fischer–Tropsch reaction. However, given the heterogeneous nature of the catalyst and forcing reaction conditions, it is difficult to determine the intermediates of this reaction. He... Read More about Mechanistic investigations of the Fe(ii) mediated synthesis of squaraines.

Homogeneous Carbon Monoxide Homologation (2023)
Book Chapter
Geer, A. M., Kays, D. L., & Taylor, L. J. (2023). Homogeneous Carbon Monoxide Homologation. In Homologation Reactions: Reagents, Applications, and Mechanisms (831-846). Wiley. https://doi.org/10.1002/9783527830237.ch23

The homogeneous activation and homologation of carbon monoxide remains a challenging and highly attractive area of chemical research. This is due in part to the fundamental synthetic interest of using highly reactive complexes, spanning the full brea... Read More about Homogeneous Carbon Monoxide Homologation.

Homotropic Cooperativity in Iron-Catalyzed Alkyne Cyclotrimerizations (2023)
Journal Article
Geer, A. M., Navarro, J., Alamán-Valtierra, P., Coles, N. T., Kays, D. L., & Tejel, C. (2023). Homotropic Cooperativity in Iron-Catalyzed Alkyne Cyclotrimerizations. ACS Catalysis, 13, 6610-6618. https://doi.org/10.1021/acscatal.3c00764

Enhancing catalytic activity through synergic effects is a current challenge in homogeneous catalysis. In addition to the well-established metal-metal and metal-ligand cooperation, we showcase here an example of self-activation by the substrate in co... Read More about Homotropic Cooperativity in Iron-Catalyzed Alkyne Cyclotrimerizations.

The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations (2023)
Journal Article
Musa, A., Ihmaid, S. K., Hughes, D. L., Said, M. A., Abulkhair, H. S., El-Ghorab, A. H., Abdelgawad, M. A., Shalaby, K., Shaker, M. E., Alharbi, K. S., Alotaibi, N. H., Kays, D. L., Taylor, L. J., Parambi, D. G. T., Alzarea, S. I., Al-Karmalawy, A. A., Ahmed, H. E., & El-Agrody, A. M. (2023). The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations. Journal of Biomolecular Structure and Dynamics, 41(21), 12411-12425. https://doi.org/10.1080/07391102.2023.2167000

Treatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epid... Read More about The anticancer and EGFR-TK/CDK-9 dual inhibitory potentials of new synthetic pyranopyrazole and pyrazolone derivatives: X-ray crystallography, in vitro, and in silico mechanistic investigations.

Slow magnetic relaxation in Fe(ii) m-terphenyl complexes (2022)
Journal Article
Valentine, A. J., Geer, A. M., Blundell, T. J., Tovey, W., Cliffe, M. J., Davies, E. S., Argent, S. P., Lewis, W., McMaster, J., Taylor, L. J., Reta, D., & Kays, D. L. (2022). Slow magnetic relaxation in Fe(ii) m-terphenyl complexes. Dalton Transactions, 51(47), 18118-18126. https://doi.org/10.1039/d2dt03531f

Two-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordi... Read More about Slow magnetic relaxation in Fe(ii) m-terphenyl complexes.

Organoruthenium Complexes Containing Hemilabile Phosphinodicarboxamide Ligands (2022)
Preprint / Working Paper
Nolla-Saltiel, R., Geer, A. M., Sharpe, H. R., Huke, C. D., Taylor, L. J., Linford-Wood, T. G., …Kays, D. L. Organoruthenium Complexes Containing Hemilabile Phosphinodicarboxamide Ligands

Ruthenium complexes of hemilabile phosphinocarboxamide ligands, and their use to form metallacycles using halide abstraction/deprotonation reactions are reported. Thus, [Ru(p-cym){PPh2C(=O)NHR}Cl2; R = iPr (1), Ph (2), p-tol (3)] and [Ru(p-cym){PPh2C... Read More about Organoruthenium Complexes Containing Hemilabile Phosphinodicarboxamide Ligands.

Structural and Electronic Studies of Substituted m-Terphenyl Group 12 Complexes (2022)
Journal Article
Valentine, A. J., Taylor, L. J., Geer, A. M., Huke, C. D., Wood, K. E., Tovey, W., …Kays, D. L. (2022). Structural and Electronic Studies of Substituted m-Terphenyl Group 12 Complexes. Organometallics, 41(11), 1426-1433. https://doi.org/10.1021/acs.organomet.2c00156

The effects of para-substitution on the structural and electronic properties of four series of two-coordinate m-terphenyl Group 12 complexes (R-Ar#)2M (M = Zn, Cd, Hg; R = t-Bu 1-3, SiMe34-6, Cl 7-9, CF310-12, where R-Ar#= 2,6-{2,6-Xyl}2-4-R-C6H2and... Read More about Structural and Electronic Studies of Substituted m-Terphenyl Group 12 Complexes.

Catalyst-free Hydrophosphinylation of Isocyanates and Isothiocyanates under Low-Added-Solvent Conditions (2021)
Journal Article
Huke, C. D., Taylor, L. J., Argent, S. P., & Kays, D. L. (2021). Catalyst-free Hydrophosphinylation of Isocyanates and Isothiocyanates under Low-Added-Solvent Conditions. ACS Sustainable Chemistry and Engineering, 9(32), 10704-10709. https://doi.org/10.1021/acssuschemeng.1c02907

A catalyst-free, low-solvent method for the hydrophosphinylation of isocyanates and isothiocyanates is reported. A range of phosphorus nucleophiles including secondary phosphine oxides HP(O)R2 (R = Ph, iPr), phosphites HP(O)(OR)2 (R = Me, Et), and me... Read More about Catalyst-free Hydrophosphinylation of Isocyanates and Isothiocyanates under Low-Added-Solvent Conditions.

Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions (2021)
Journal Article
Liu, Y., Taylor, L. J., Argent, S. P., McMaster, J., & Kays, D. L. (2021). Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions. Inorganic Chemistry, 60(14), 10114-10123. https://doi.org/10.1021/acs.inorgchem.0c03623

A series of group 11 m-terphenyl complexes have been synthesized via a metathesis reaction from the iron(II) complexes (2,6-Mes2C6H3)2Fe and (2,6-Xyl2C6H3)2Fe (Mes = 2,4,6-Me3C6H2; Xyl = 2,6-Me2C6H3). [2,6-Mes2C6H3M]2 (1, M = Cu; 2, M = Ag; 6, M = Au... Read More about Group 11 m-Terphenyl Complexes Featuring Metallophilic Interactions.

Structural and electronic studies of substituted m-terphenyl lithium complexes (2020)
Journal Article
Valentine, A. J., Geer, A. M., Taylor, L. J., Teale, A. M., Wood, K. E., Williams, H. E. L., …Kays, D. L. (2021). Structural and electronic studies of substituted m-terphenyl lithium complexes. Dalton Transactions, 50(2), 722-728. https://doi.org/10.1039/d0dt03972a

The effect of para-substitution upon the structural and electronic properties of a series of m-terphenyl lithium complexes [R-Ar#-Li]2 (R = t-Bu 1, SiMe32, H 3, Cl 4, CF35; where R-Ar# = 2,6-{2,6-Xyl}2-4-R-C6H2 and 2,6-Xyl = 2,6-Me2C6H3) has been inv... Read More about Structural and electronic studies of substituted m-terphenyl lithium complexes.

Corrigendum: A Highly Active Bidentate Magnesium Catalyst for Amine‐Borane Dehydrocoupling: Kinetic and Mechanistic Studies (2020)
Journal Article
Ried, A. C. A., Taylor, L. J., Geer, A. M., Williams, H. E. L., Lewis, W., Blake, A. J., & Kays, D. L. (2020). Corrigendum: A Highly Active Bidentate Magnesium Catalyst for Amine‐Borane Dehydrocoupling: Kinetic and Mechanistic Studies. Chemistry - A European Journal, 26(7), 1692-1692. https://doi.org/10.1002/chem.202000050

In the published paper, we described the attempted synthesis of Me2NH⋅BD3, according to the method published by Webster et al., which in our hands afforded a mixture of Me2NH⋅BH3 and Me2NH⋅BD3. We would like to clarify that in the paper Webster et al... Read More about Corrigendum: A Highly Active Bidentate Magnesium Catalyst for Amine‐Borane Dehydrocoupling: Kinetic and Mechanistic Studies.

Low-coordinate first-row transition metal complexes in catalysis and small molecule activation (2019)
Journal Article
Taylor, L. J., & Kays, D. L. (2019). Low-coordinate first-row transition metal complexes in catalysis and small molecule activation. Dalton Transactions, 48(33), 12365-12381. https://doi.org/10.1039/C9DT02402F

Enforcing unusually low coordination numbers on transition metals with sterically demanding ligands has long been an area of interest for chemists. Historically, the synthesis of these challenging molecules has helped to elucidate fundamental princip... Read More about Low-coordinate first-row transition metal complexes in catalysis and small molecule activation.