Skip to main content

Research Repository

Advanced Search

All Outputs (147)

Improved Thermal Modeling and Experimental Validation of Oil-Flooded High-Performance Machines with Slot-Channel Cooling (2021)
Journal Article
Zhang, F., Gerada, D., Xu, Z., Zhang, X., Zhang, H., Gerada, C., …Degano, M. (2022). Improved Thermal Modeling and Experimental Validation of Oil-Flooded High-Performance Machines with Slot-Channel Cooling. IEEE Transactions on Transportation Electrification, 8(1), 312-324. https://doi.org/10.1109/TTE.2021.3106819

Thermal management is often considered a bottleneck in the pursuit of the next-generation electrical machines for electrified transportation with a step change in power density. Slot-channel cooling is considered to be an effective cooling technique,... Read More about Improved Thermal Modeling and Experimental Validation of Oil-Flooded High-Performance Machines with Slot-Channel Cooling.

How non-conventional machining affects the surface integrity and magnetic properties of non-oriented electrical steel (2021)
Journal Article
Winter, K., Liao, Z., Ramanathan, R., Axinte, D., Vakil, G., & Gerada, C. (2021). How non-conventional machining affects the surface integrity and magnetic properties of non-oriented electrical steel. Materials and Design, 210, Article 110051. https://doi.org/10.1016/j.matdes.2021.110051

Non-oriented electrical steel (NOES) laminations are commonly used to manufacture the rotor and stator core of electric machines. To achieve high machine efficiencies, it is desirable for these NOES laminations to be able to achieve a high saturation... Read More about How non-conventional machining affects the surface integrity and magnetic properties of non-oriented electrical steel.

Integrated motor drive: Mass and volume optimization of the motor with an integrated filter inductor (2021)
Journal Article
Khowja, M. R., Vakil, G., Gerada, C., Patel, C., Odhano, S., & Wheeler, P. (2021). Integrated motor drive: Mass and volume optimization of the motor with an integrated filter inductor. Energies, 14(15), Article 4564. https://doi.org/10.3390/en14154564

The present trend of aerospace industries is being shifted towards a “More Electric Aircraft” system which needs to be high power dense. For this purpose, the integration technologies have gained massive interest, providing the benefits of reduced lo... Read More about Integrated motor drive: Mass and volume optimization of the motor with an integrated filter inductor.

Electrical Machine Slot Thermal Condition Effects on Back Iron Extension Thermal Benefits (2021)
Journal Article
Zhang, F., Gerada, D., Xu, Z., Tighe, C., Zhang, H., Yan, L., & Gerada, C. (2021). Electrical Machine Slot Thermal Condition Effects on Back Iron Extension Thermal Benefits. IEEE Transactions on Transportation Electrification, 7(4), 2927-2938. https://doi.org/10.1109/tte.2021.3085822

The slot thermal condition is critical for thermal management of high-performance electrical machines, due to the high heat losses and poor heat transfer ability within the slot. With a part of the back iron projected radially downward into the slot,... Read More about Electrical Machine Slot Thermal Condition Effects on Back Iron Extension Thermal Benefits.

Torque Ripple Suppression for IPMSM using FEA- based Model Predictive Direct Torque Control (2021)
Presentation / Conference Contribution
Nasr, A., Gu, C., Zhao, W., Bozhko, S., & Gerada, C. (2021). Torque Ripple Suppression for IPMSM using FEA- based Model Predictive Direct Torque Control. In 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (204-209). https://doi.org/10.1109/wemdcd51469.2021.9425636

The interest in model predictive direct torque control (MP-DTC) for high-performance dynamic control of electric drives has been growing. Unlike the conventional direct torque control (DTC), MP-DTC can achieve optimal voltage selection by predicting... Read More about Torque Ripple Suppression for IPMSM using FEA- based Model Predictive Direct Torque Control.

Permanent Magnet Reduction by Current Harmonics Injection for Surface Permanent Magnet Machines (2021)
Presentation / Conference Contribution
De Gaetano, D., Sala, G., Degano, M., & Gerada, C. (2021). Permanent Magnet Reduction by Current Harmonics Injection for Surface Permanent Magnet Machines. In 2021 IEEE Workshop on Electrical Machines Design, Control and Diagnosis (WEMDCD) (137-142). https://doi.org/10.1109/wemdcd51469.2021.9425662

This paper presents the analysis of multi-harmonic current injection in multi-three phase surface permanent magnet (SPM) machines. An analytical model, extended to a generic harmonic order, is used to describe and determine the no load flux density,... Read More about Permanent Magnet Reduction by Current Harmonics Injection for Surface Permanent Magnet Machines.

Enhanced Active Disturbance Rejection Current Controller for Permanent Magnet Synchronous Machines Operated at Low Sampling Time Ratio (2021)
Journal Article
Diab, A. M., Yeoh, S. S., Bozhko, S., Gerada, C., & Galea, M. (2022). Enhanced Active Disturbance Rejection Current Controller for Permanent Magnet Synchronous Machines Operated at Low Sampling Time Ratio. IEEE Journal of Emerging and Selected Topics in Industrial Electronics, 3, 230-241. https://doi.org/10.1109/JESTIE.2021.3063919

Recently, Active Disturbance Rejection Control (ADRC) Scheme has been widely used for current regulation in AC drive systems owing to its robustness to system uncertainties and its high disturbance-rejection capability. However, it has not been consi... Read More about Enhanced Active Disturbance Rejection Current Controller for Permanent Magnet Synchronous Machines Operated at Low Sampling Time Ratio.

Active Thermal Control for Modular Power Converters in Multi-Phase Permanent Magnet Synchronous Motor Drive System (2021)
Journal Article
Yan, H., Zhao, W., Buticchi, G., & Gerada, C. (2021). Active Thermal Control for Modular Power Converters in Multi-Phase Permanent Magnet Synchronous Motor Drive System. IEEE Access, 9, 7054-7063. https://doi.org/10.1109/access.2021.3049293

Modular winding structure has been employed in the Permanent Magnet SynchronousMotors (PMSMs) to increase the reliability and reduce the torque ripple. Nevertheless, the reliability ofthe motor system depends on the lifetime of the power semiconducto... Read More about Active Thermal Control for Modular Power Converters in Multi-Phase Permanent Magnet Synchronous Motor Drive System.

Optimization and Analysis of a High Power Density and Fault Tolerant Starter–Generator for Aircraft Application (2020)
Journal Article
Wang, B., Vakil, G., Liu, Y., Yang, T., Zhang, Z., & Gerada, C. (2021). Optimization and Analysis of a High Power Density and Fault Tolerant Starter–Generator for Aircraft Application. Energies, 14(1), Article 113. https://doi.org/10.3390/en14010113

Permanent magnet synchronous machines provide many dramatic electromagnetic performances such as high efficiency and high power density, which make them more competitive in aircraft electrification, whereas, designing a permanent magnet starter–gener... Read More about Optimization and Analysis of a High Power Density and Fault Tolerant Starter–Generator for Aircraft Application.

Design Methodology and Parametric Design Study of the On-Board Electrical Power System for Hybrid Electric Aircraft Propulsion (2020)
Presentation / Conference Contribution
Valente, G., Sumsurooah, S., Ian Hill, C., Rashed, M., Vakil, G., Bozhko, S., & Gerada, C. (2020). Design Methodology and Parametric Design Study of the On-Board Electrical Power System for Hybrid Electric Aircraft Propulsion.

This paper presents parametric design studies of the on-board Electrical Power System (EPS) for a distributed hybrid aircraft propulsion. The work presents the methodology that has been adopted to develop the physics-based models of the EPS component... Read More about Design Methodology and Parametric Design Study of the On-Board Electrical Power System for Hybrid Electric Aircraft Propulsion.

Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines (2020)
Presentation / Conference Contribution
Transi, T., Murataliyev, M., Degano, M., Preci, E., Gerada, D., & Gerada, C. (2020). Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines. . https://doi.org/10.1109/iecon43393.2020.9255237

Nowadays, Interior Permanent Magnet Synchronous Machines (IPMSM) are widely adopted in various sectors such as automotive, railway or public transportation (e- buses, trams, etc.). Among the benefits that these machines present, they offer a number o... Read More about Influence of Rotor Design on Electromagnetic Performance in Interior Permanent Magnet Machines.

Multiphase fault tolerant distributed control techniques for integrated drives based on resonant regulators (2020)
Presentation / Conference Contribution
Savi, F., Barater, D., Buticchi, G., Wheeler, P., & Gerada, C. (2020). Multiphase fault tolerant distributed control techniques for integrated drives based on resonant regulators. . https://doi.org/10.1109/iecon43393.2020.9254985

One of the challenges brought forward by the gradual electrification undertaken by the aviation sector is the requirement of fault tolerance for machine drive systems to be used for critical on-board tasks such as propulsion or primary flight surface... Read More about Multiphase fault tolerant distributed control techniques for integrated drives based on resonant regulators.

SISO Control Strategy of Resonant Dual Active Bridge with a Tuned CLC Network (2020)
Presentation / Conference Contribution
Wang, M., Yang, B., Xu, L., Li, J., Gerada, D., Gu, C., …Li, Y. (2020). SISO Control Strategy of Resonant Dual Active Bridge with a Tuned CLC Network. In 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe). https://doi.org/10.23919/epe20ecceeurope43536.2020.9215606

This paper proposed a linear state-space model for a resonant dual active bridge with a tuned capacitor-inductor-capacitor network which is applied to an energy storage system. The proposed model is used for predicting the behavior of the proposed sy... Read More about SISO Control Strategy of Resonant Dual Active Bridge with a Tuned CLC Network.

Improved V‐shaped interior permanent magnet rotor topology with inward‐extended bridges for reduced torque ripple (2020)
Journal Article
Gao, P., Sun, X., Gerada, D., Gerada, C., & Wang, X. (2020). Improved V‐shaped interior permanent magnet rotor topology with inward‐extended bridges for reduced torque ripple. IET Electric Power Applications, 14(12), 2404-2411. https://doi.org/10.1049/iet-epa.2019.0850

Interior permanent magnet synchronous machines (IPMSMs) with V-shaped permanent magnet (PM) rotors are widely used as traction motors in electric vehicles because of their high torque density and high efficiency. However, the V-shape IPMSMs have the... Read More about Improved V‐shaped interior permanent magnet rotor topology with inward‐extended bridges for reduced torque ripple.

Rotor Position Tracking Control for Low Speed Operation of Direct-Drive PMSM Servo System (2020)
Journal Article
Bu, F., Xuan, F., Yang, Z., Gao, Y., Pan, Z., Degano, M., & Gerada, C. (2021). Rotor Position Tracking Control for Low Speed Operation of Direct-Drive PMSM Servo System. IEEE/ASME Transactions on Mechatronics, 26(2), 1129-1139. https://doi.org/10.1109/tmech.2020.3019039

In this paper, a rotor position tracking control (RPTC) strategy is proposed to effectively reduce the speed fluctuation for a direct-drive permanent magnet synchronous motor (DD-PMSM) servo system operating at low speed with different torque disturb... Read More about Rotor Position Tracking Control for Low Speed Operation of Direct-Drive PMSM Servo System.

An Analytical Approach for the Design of Innovative Hairpin Winding Layouts (2020)
Presentation / Conference Contribution
Arzillo, A., Nuzzo, S., Braglia, P., Franceschini, G., Barater, D., Gerada, D., & Gerada, C. (2020). An Analytical Approach for the Design of Innovative Hairpin Winding Layouts. . https://doi.org/10.1109/icem49940.2020.9270927

This work deals with an analytical approach aimed at accurately predicting Joule losses in innovative hairpin winding layouts. While hairpin windings are seeing an everincreasing use in automotive and aerospace applications due to their inherently hi... Read More about An Analytical Approach for the Design of Innovative Hairpin Winding Layouts.

Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement (2020)
Journal Article
Marfoli, A., Di Nardo, M., Degano, M., Gerada, C., & Chen, W. (2021). Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement. IEEE Transactions on Energy Conversion, 36(2), 1271-1279. https://doi.org/10.1109/tec.2020.3019934

Squirrel cage induction motor is the most widely adopted electrical machine in applications directly fed by the main grid. The analysis, design and optimization of this machine topology has been addressed by a considerable amount of literature over t... Read More about Rotor Design Optimization of Squirrel Cage Induction Motor - Part I: Problem Statement.

Challenges and Future opportunities of Hairpin Technologies (2020)
Presentation / Conference Contribution
Arzillo, A., Braglia, P., Nuzzo, S., Barater, D., Franceschini, G., Gerada, D., & Gerada, C. (2020). Challenges and Future opportunities of Hairpin Technologies. . https://doi.org/10.1109/ISIE45063.2020.9152417

Hairpin windings are seeing an ever-increasing application and development in electrical machines designed for high power and torque densities. In fact, due to their inherently high fill factor, they are very attractive in applications, such as trans... Read More about Challenges and Future opportunities of Hairpin Technologies.

Analysis and Modelling of High Frequency Effects on Synchronous Generator’s Armature Conductors (2020)
Presentation / Conference Contribution
Quadri, Q. H., Nuzzo, S., Gerada, C., & Galea, M. (2020). Analysis and Modelling of High Frequency Effects on Synchronous Generator’s Armature Conductors. In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE) (253-258). https://doi.org/10.1109/ISIE45063.2020.9152456

This paper investigates the accuracy of the subdomain modelling technique for high frequency copper loss calculation in stator windings of synchronous generators. The methodology's accuracy is studied at a slot level up to 10 kHz against FE model wit... Read More about Analysis and Modelling of High Frequency Effects on Synchronous Generator’s Armature Conductors.