Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine (2024)
Journal Article
Bayraktutan, H., Symonds, P., Brentville, V. A., Moloney, C., Galley, C., Bennett, C. L., …Gurnani, P. (2024). Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine. Biomaterials, 311, Article 122647. https://doi.org/10.1016/j.biomaterials.2024.122647

DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of t... Read More about Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine.

Triblock copolymer micelles enhance solubility, permeability and activity of a quorum sensing inhibitor against Pseudomonas aeruginosa biofilms (2024)
Journal Article
Kasza, K., Soukarieh, F., Romero, M., Hardie, K. R., Gurnani, P., Cámara, M., & Alexander, C. (2024). Triblock copolymer micelles enhance solubility, permeability and activity of a quorum sensing inhibitor against Pseudomonas aeruginosa biofilms. RSC Applied Polymers, 2(3), 444-455. https://doi.org/10.1039/D3LP00208J

Antimicrobial resistance is a threat to public health for which new treatments are urgently required. The capability of bacteria to form biofilms is of particular concern as it enables high bacterial tolerance to conventional therapies by reducing dr... Read More about Triblock copolymer micelles enhance solubility, permeability and activity of a quorum sensing inhibitor against Pseudomonas aeruginosa biofilms.