Skip to main content

Research Repository

Advanced Search

All Outputs (2)

Supramolecular hydrogels enable co-delivery of chemotherapeutics with synergistic efficacy against patient-derived glioblastoma cells and spheroids (2024)
Journal Article
Cavanagh, R. J., Baquain, S., Alexander, C., Scherman, O. A., & Rahman, R. (2024). Supramolecular hydrogels enable co-delivery of chemotherapeutics with synergistic efficacy against patient-derived glioblastoma cells and spheroids. RSC Advances, https://doi.org/10.1039/D4PM00177J

Drug combinations have been shown to be highly effective in many cancer therapies but the ratios of the individual drugs must be adjusted carefully and formulated appropriately to ensure synergistic action. Here we assessed combinations of doxorubici... Read More about Supramolecular hydrogels enable co-delivery of chemotherapeutics with synergistic efficacy against patient-derived glioblastoma cells and spheroids.

Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine (2024)
Journal Article
Bayraktutan, H., Symonds, P., Brentville, V. A., Moloney, C., Galley, C., Bennett, C. L., Mata, A., Durrant, L., Alexander, C., & Gurnani, P. (2024). Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine. Biomaterials, 311, Article 122647. https://doi.org/10.1016/j.biomaterials.2024.122647

DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of t... Read More about Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine.