Skip to main content

Research Repository

Advanced Search

All Outputs (8)

Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall (2015)
Journal Article

Electrospinning is a highly adaptable method producing porous 3D fibrous scaffolds that can be exploited in in vitro cell culture. Alterations to intrinsic parameters within the process allow a high degree of control over scaffold characteristics inc... Read More about Adapting the electrospinning process to provide three unique environments for a tri-layered in vitro model of the airway wall.

TLR2 stimulation regulates the balance between regulatory T cell and Th17 function: A novel mechanism of reduced regulatory T cell function in multiple sclerosis (2015)
Journal Article
Nyirenda, M. H., Morandi, E., Vinkemeier, U., Constantin-Teodosiu, D., Drinkwater, S., Mee, M., …Gran, B. (2015). TLR2 stimulation regulates the balance between regulatory T cell and Th17 function: A novel mechanism of reduced regulatory T cell function in multiple sclerosis. Journal of Immunology, 194(12), 5761-5774. https://doi.org/10.4049/jimmunol.1400472

CD4+ CD25hi FOXP3+ regulatory T cells (Tregs) maintain tolerance to self-Ags. Their defective function is involved in the pathogenesis of multiple sclerosis (MS), an inflammatory demyelinating disease of the CNS. However, the mechanisms of such defec... Read More about TLR2 stimulation regulates the balance between regulatory T cell and Th17 function: A novel mechanism of reduced regulatory T cell function in multiple sclerosis.

TLR2 Stimulation Regulates the Balance between Regulatory T Cell and Th17 Function: A Novel Mechanism of Reduced Regulatory T Cell Function in Multiple Sclerosis (2015)
Journal Article
Nyirenda, M. H., Morandi, E., Vinkemeier, U., Constantin-Teodosiu, D., Drinkwater, S., Mee, M., …Gran, B. (2015). TLR2 Stimulation Regulates the Balance between Regulatory T Cell and Th17 Function: A Novel Mechanism of Reduced Regulatory T Cell Function in Multiple Sclerosis. Journal of Immunology, 194(12), 5761-5774. https://doi.org/10.4049/%E2%80%8Bjimmunol.1400472

CD4+CD25hi FOXP3+ regulatory T cells (Tregs) maintain tolerance to self-Ags. Their defective function is involved in the pathogenesis of multiple sclerosis (MS), an inflammatory demyelinating disease of the CNS. However, the mechanisms of such defect... Read More about TLR2 Stimulation Regulates the Balance between Regulatory T Cell and Th17 Function: A Novel Mechanism of Reduced Regulatory T Cell Function in Multiple Sclerosis.

A Janus-paper PDMS platform for air-liquid interface cell culture applications (2015)
Journal Article
Rahimi, R., Ochoa, M., Donaldson, A., Parupudi, T., Dokmeci, M. R., Khademhosseini, A., …Ziaie, B. (2015). A Janus-paper PDMS platform for air-liquid interface cell culture applications. Journal of Micromechanics and Microengineering, 25(5), Article 055015. https://doi.org/10.1088/0960-1317/25/5/055015

© 2015 IOP Publishing Ltd. A commercially available Janus paper with one hydrophobic (polyethylene-coated) face and a hygroscopic/hydrophilic one is irreversibly bonded to a polydimethylsiloxane (PDMS) substrate incorporating microfluidic channels vi... Read More about A Janus-paper PDMS platform for air-liquid interface cell culture applications.

Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering (2015)
Journal Article
Zhao, X., Lang, Q., Yildirimer, L., Lin, Z. Y., Cui, W., Annabi, N., …Khademhosseini, A. (2016). Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering. Advanced Healthcare Materials, 5(1), 108-118. https://doi.org/10.1002/adhm.201500005

Natural hydrogels are promising scaffolds to engineer epidermis. Currently, natural hydrogels used to support epidermal regeneration are mainly collagen- or gelatin-based, which mimic the natural dermal extracellular matrix but often suffer from insu... Read More about Photocrosslinkable Gelatin Hydrogel for Epidermal Tissue Engineering.

Microfluidics for advanced drug delivery systems (2015)
Journal Article
Riahi, R., Tamayol, A., Shaegh, S. A. M., Ghaemmaghami, A. M., Dokmeci, M. R., & Khademshosseini, A. (2015). Microfluidics for advanced drug delivery systems. Current Opinion in Chemical Engineering, 7, 101-112. https://doi.org/10.1016/j.coche.2014.12.001

©2015 Elsevier Ltd. All rights reserved. Considerable efforts have been devoted toward developing effective drug delivery methods. Microfluidic systems, with their capability for precise handling and transport of small liquid quantities, have emerged... Read More about Microfluidics for advanced drug delivery systems.

Impact of surface chemistry and topography on the function of antigen presenting cells (2015)
Journal Article
Rostam, H. M., Singh, S., Vrana, N. E., Alexander, M. R., & Ghaemmaghami, A. M. (2015). Impact of surface chemistry and topography on the function of antigen presenting cells. Biomaterials Science, 3(3), 424-441. https://doi.org/10.1039/c4bm00375f

Antigen presenting cells (APCs) such as macrophages and dendritic cells (DCs) play a crucial role in orchestrating immune responses against foreign materials. The activation status of APCs can determine the outcome of an immune response following imp... Read More about Impact of surface chemistry and topography on the function of antigen presenting cells.