Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2 (2023)
Journal Article
Tidy, A., Abu Bakar, N., Carrier, D., Kerr, I. D., Hodgman, C., Bennett, M. J., & Swarup, R. (2024). Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2. Plant Physiology, 194(1), 422-433. https://doi.org/10.1093/plphys/kiad506

AUXIN RESISTANCE4 (AXR4) regulates the trafficking of auxin influx carrier AUXIN1 (AUX1), a plasma-membrane protein that predominantly localizes to the endoplasmic reticulum (ER) in the absence of AXR4. In Arabidopsis (Arabidopsis thaliana), AUX1 is... Read More about Mechanistic insight into the role of AUXIN RESISTANCE4 in trafficking of AUXIN1 and LIKE AUX1-2.

Sporophytic control of pollen meiotic progression is mediated by tapetum expression of ABORTED MICROSPORES (2022)
Journal Article
Tidy, A. C., Ferjentsikova, I., Vizcay-Barrena, G., Liu, B., Yin, W., Higgins, J. D., …Wilson, Z. A. (2022). Sporophytic control of pollen meiotic progression is mediated by tapetum expression of ABORTED MICROSPORES. Journal of Experimental Botany, 73(16), 5543-5558. https://doi.org/10.1093/jxb/erac225

Pollen development is dependent on the tapetum, a sporophytic anther cell layer surrounding the microspores that functions in pollen wall formation but is also essential for meiosis-associated development. There is clear evidence of crosstalk and co-... Read More about Sporophytic control of pollen meiotic progression is mediated by tapetum expression of ABORTED MICROSPORES.

Meiosis and beyond – understanding the mechanistic and evolutionary processes shaping the germline genome (2021)
Journal Article
Bergero, R., Ellis, P., Haerty, W., Larcombe, L., Macaulay, I., Mehta, T., …Immler, S. (2021). Meiosis and beyond – understanding the mechanistic and evolutionary processes shaping the germline genome. Biological Reviews, 96(3), 822-841. https://doi.org/10.1111/brv.12680

The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the ge... Read More about Meiosis and beyond – understanding the mechanistic and evolutionary processes shaping the germline genome.

Transcription factor MYB26 is key to spatial specificity in anther secondary thickening formation (2017)
Journal Article
Yang, C., Song, J., Ferguson, A. C., Klisch, D., Simpson, K., Mo, R., …Wilson, Z. A. (2017). Transcription factor MYB26 is key to spatial specificity in anther secondary thickening formation. Plant Physiology, 175(1), https://doi.org/10.1104/pp.17.00719

Successful fertilization relies on the production and effective release of viable pollen. Failure of anther opening (dehiscence), results in male sterility, although the pollen may be fully functional. MYB26 regulates the formation of secondary thick... Read More about Transcription factor MYB26 is key to spatial specificity in anther secondary thickening formation.

FlowerNet: a gene expression correlation metwork for anther and pollen development (2015)
Journal Article
Pearce, S., Ferguson, A., King, J., & Wilson, Z. A. (2015). FlowerNet: a gene expression correlation metwork for anther and pollen development. Plant Physiology, 167(4), https://doi.org/10.1104/pp.114.253807

Floral formation, in particular anther and pollen development, is a complex biological process with critical importance for seed set and for targeted plant breeding. Many key transcription factors regulating this process have been identified; however... Read More about FlowerNet: a gene expression correlation metwork for anther and pollen development.