Skip to main content

Research Repository

Advanced Search

Explaining the proton radius puzzle with disformal scalars

Brax, Philippe; Burrage, Clare

Authors

Philippe Brax



Abstract

We analyze the consequences of a disformal interaction between a massless scalar and matter particles in the context of atomic physics. We focus on the displacement of the atomic energy levels that it induces, and in particular the change in the Lamb shift between the 2s and 2p states. We find that the correction to the Lamb shift depends on the mass of the fermion orbiting around the nucleus, implying a larger effect for muonic atoms. Taking the cutoff scale describing the effective scalar field theory close to the QCD scale, we find that the disformal interaction can account for the observed difference in the proton radius of muonic versus electronic hydrogen. Explaining the proton radius puzzle is only possible when the scalar field is embedded in nonlinear theories which alleviate constraints from collider and stellar physics. Short distance properties of the Galileon where nonperturbative effects in vacuum are present ensure that unitarity is preserved in high-energy particle collisions. In matter, the chameleon mechanism alleviates the constraints on disformal interactions coming from the burning rates for stellar objects. We show how to combine these two properties in a single model which renders the proposed explanation of the proton radius puzzle viable.

Journal Article Type Article
Publication Date Feb 11, 2015
Journal Physical Review D
Print ISSN 2470-0010
Electronic ISSN 2470-0029
Publisher American Physical Society
Peer Reviewed Peer Reviewed
Volume D91
Issue 4
Article Number 043515
APA6 Citation Brax, P., & Burrage, C. (2015). Explaining the proton radius puzzle with disformal scalars. Physical Review D, D91(4), https://doi.org/10.1103/PhysRevD.91.043515
DOI https://doi.org/10.1103/PhysRevD.91.043515
Publisher URL https://journals.aps.org/prd/abstract/10.1103/PhysRevD.91.043515
Copyright Statement Copyright information regarding this work can be found at the following address: http://eprints.nottingh.../end_user_agreement.pdf

Files

1407.2376.pdf (178 Kb)
PDF

Copyright Statement
Copyright information regarding this work can be found at the following address: http://eprints.nottingham.ac.uk/end_user_agreement.pdf





You might also like



Downloadable Citations

;