Skip to main content

Research Repository

Advanced Search

RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer

Sanz-Moreno, Adri�n; Palomeras, Sonia; Pedersen, Kim; Morancho, Beatriz; Pascual, Tomas; Galv�n, Patricia; Ben�tez, Sandra; Gomez-Miragaya, Jorge; Ciscar, Marina; Jimenez, Maria; Pernas, Sonia; Petit, Anna; Soler-Mons�, Mar�a Teresa; Vi�as, Gemma; Alsaleem, Mansour; Rakha, Emad A.; Green, Andrew R.; Santamaria, Patricia G.; Mulder, Celine; Lemeer, Simone; Arribas, Joaquin; Prat, Aleix; Puig, Teresa; Gonzalez-Suarez, Eva

RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer Thumbnail


Authors

Adri�n Sanz-Moreno

Sonia Palomeras

Kim Pedersen

Beatriz Morancho

Tomas Pascual

Patricia Galv�n

Sandra Ben�tez

Jorge Gomez-Miragaya

Marina Ciscar

Maria Jimenez

Sonia Pernas

Anna Petit

Mar�a Teresa Soler-Mons�

Gemma Vi�as

Mansour Alsaleem

EMAD RAKHA Emad.Rakha@nottingham.ac.uk
Professor of Breast Cancer Pathology

Patricia G. Santamaria

Celine Mulder

Simone Lemeer

Joaquin Arribas

Aleix Prat

Teresa Puig

Eva Gonzalez-Suarez



Abstract

Background
Around 15–20% of primary breast cancers are characterized by HER2 protein overexpression and/or HER2 gene amplification. Despite the successful development of anti-HER2 drugs, intrinsic and acquired resistance represents a major hurdle. This study was performed to analyze the RANK pathway contribution in HER2-positive breast cancer and anti-HER2 therapy resistance.

Methods
RANK and RANKL protein expression was assessed in samples from HER2-positive breast cancer patients resistant to anti-HER2 therapy and treatment-naive patients. RANK and RANKL gene expression was analyzed in paired samples from patients treated with neoadjuvant dual HER2-blockade (lapatinib and trastuzumab) from the SOLTI-1114 PAMELA trial. Additionally, HER2-positive breast cancer cell lines were used to modulate RANK expression and analyze in vitro the contribution of RANK signaling to anti-HER2 resistance and downstream signaling.

Results
RANK and RANKL proteins are more frequently detected in HER2-positive tumors that have acquired resistance to anti-HER2 therapies than in treatment-naive ones. RANK (but not RANKL) gene expression increased after dual anti-HER2 neoadjuvant therapy in the cohort from the SOLTI-1114 PAMELA trial. Results in HER2-positive breast cancer cell lines recapitulate the clinical observations, with increased RANK expression observed after short-term treatment with the HER2 inhibitor lapatinib or dual anti-HER2 therapy and in lapatinib-resistant cells. After RANKL stimulation, lapatinib-resistant cells show increased NF-κB activation compared to their sensitive counterparts, confirming the enhanced functionality of the RANK pathway in anti-HER2-resistant breast cancer. Overactivation of the RANK signaling pathway enhances ERK and NF-κB signaling and increases lapatinib resistance in different HER2-positive breast cancer cell lines, whereas RANK loss sensitizes lapatinib-resistant cells to the drug. Our results indicate that ErbB signaling is required for RANK/RANKL-driven activation of ERK in several HER2-positive cell lines. In contrast, lapatinib is not able to counteract the NF-κB activation elicited after RANKL treatment in RANK-overexpressing cells. Finally, we show that RANK binds to HER2 in breast cancer cells and that enhanced RANK pathway activation alters HER2 phosphorylation status.

Conclusions
Our data support a physical and functional link between RANK and HER2 signaling in breast cancer and demonstrate that increased RANK signaling may contribute to the development of lapatinib resistance through NF-κB activation. Whether HER2-positive breast cancer patients with tumoral RANK expression might benefit from dual HER2 and RANK inhibition therapy remains to be elucidated.

Citation

Sanz-Moreno, A., Palomeras, S., Pedersen, K., Morancho, B., Pascual, T., Galván, P., …Gonzalez-Suarez, E. (2021). RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer. Breast Cancer Research, 23(1), Article 42. https://doi.org/10.1186/s13058-021-01390-2

Journal Article Type Article
Acceptance Date Jan 11, 2021
Online Publication Date Mar 30, 2021
Publication Date Mar 30, 2021
Deposit Date Jun 22, 2021
Publicly Available Date Jun 22, 2021
Journal Breast Cancer Research
Print ISSN 1465-5411
Electronic ISSN 1465-542X
Publisher Springer Verlag
Peer Reviewed Peer Reviewed
Volume 23
Issue 1
Article Number 42
DOI https://doi.org/10.1186/s13058-021-01390-2
Keywords Cancer Research; Oncology
Public URL https://nottingham-repository.worktribe.com/output/5718751
Publisher URL https://breast-cancer-research.biomedcentral.com/articles/10.1186/s13058-021-01390-2

Files





You might also like



Downloadable Citations