Skip to main content

Research Repository

Advanced Search

Discovery of novel SOS1 inhibitors using machine learning

Duo, Lihui; Chen, Yi; Liu, Qiupei; Ma, Zhangyi; Farjudian, Amin; Yong Ho, Wan; Shin Low, Sze; Ren, Jianfeng; Hirst, Jonathan D.; Xie, Hua; Tang, Bencan

Discovery of novel SOS1 inhibitors using machine learning Thumbnail


Authors

Lihui Duo

Yi Chen

Qiupei Liu

Zhangyi Ma

Amin Farjudian

Wan Yong Ho

Sze Shin Low

Jianfeng Ren

Hua Xie

Bencan Tang



Abstract

Overactivation of the rat sarcoma virus (RAS) signaling is responsible for 30% of all human malignancies. Son of sevenless 1 (SOS1), a crucial node in the RAS signaling pathway, could modulate RAS activation, offering a promising therapeutic strategy for RAS-driven cancers. Applying machine learning (ML)-based virtual screening (VS) on small-molecule databases, we selected a random forest (RF) regressor for its robustness and performance. Screening was performed with the L-series and EGFR-related datasets, and was extended to the Chinese National Compound Library (CNCL) with more than 1.4 million compounds. In addition to a series of documented SOS1-related molecules, we uncovered nine compounds that have an unexplored chemical framework and displayed inhibitory activity, with the most potent achieving more than 50% inhibition rate in the KRAS G12C/SOS1 PPI assay and an IC50 value in the proximity of 20 μg mL−1. Compared with the manner that known inhibitory agents bind to the target, hit compounds represented by CL01545365 occupy a unique pocket in molecular docking. An in silico drug-likeness assessment suggested that the compound has moderately favorable drug-like properties and pharmacokinetic characteristics. Altogether, our findings strongly support that, characterized by the distinctive binding modes, the recognition of novel skeletons from the carboxylic acid series could be candidates for developing promising SOS1 inhibitors.

Citation

Duo, L., Chen, Y., Liu, Q., Ma, Z., Farjudian, A., Yong Ho, W., …Tang, B. (2024). Discovery of novel SOS1 inhibitors using machine learning. RSC Medicinal Chemistry, 15(4), 1392-1403. https://doi.org/10.1039/D4MD00063C

Journal Article Type Article
Acceptance Date Mar 14, 2024
Online Publication Date Mar 15, 2024
Publication Date Mar 15, 2024
Deposit Date Mar 30, 2024
Publicly Available Date Apr 8, 2024
Journal RSC Medicinal Chemistry
Print ISSN 2632-8682
Electronic ISSN 2632-8682
Publisher Royal Society of Chemistry
Peer Reviewed Peer Reviewed
Volume 15
Issue 4
Pages 1392-1403
DOI https://doi.org/10.1039/D4MD00063C
Public URL https://nottingham-repository.worktribe.com/output/33027482
Publisher URL https://pubs.rsc.org/en/content/articlelanding/2024/md/d4md00063c

Files





You might also like



Downloadable Citations