Skip to main content

Research Repository

Advanced Search

Outputs (50)

Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications (2024)
Presentation / Conference Contribution
Zhu, Y., Yang, T., Wang, Z., Yan, X., Bozhko, S., & Wheeler, P. (2024). Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications. In 2024 IEEE Applied Power Electronics Conference and Exposition (APEC) (2226-2231). https://doi.org/10.1109/APEC48139.2024.10509461

Within a More-Electric Aircraft (MEA) dc power distribution system, Half-Bridge-Active-Clamped (HBAC) converters can be used to control the power transfer between different dc buses, for example, between +/-270V to 28V dc buses. However, due to the r... Read More about Parasitic Inductance Impact of a High-Turn-Ratio Half Bridge Active Clamped Converter for More-Electric Aircraft Applications.

Modelling and Sizing Framework for Hybrid-Electric Aircraft Architecture Development (2023)
Presentation / Conference Contribution
Wise, A., Kolisnichenko, A., Bozhko, S., Sumsurooah, S., & Yeoh, S. (2023). Modelling and Sizing Framework for Hybrid-Electric Aircraft Architecture Development. In ITEC Asia-Pacific 2023 - 2023 IEEE Transportation Electrification Conference and Expo, Asia-Pacific. https://doi.org/10.1109/itecasia-pacific59272.2023.10372367

This project aims to develop an electrical system for a hybrid-electric, regional aircraft as part of the drive towards more sustainable transportation. It wants to reduce the aviation industry's contribution to carbon emissions, looking at more gree... Read More about Modelling and Sizing Framework for Hybrid-Electric Aircraft Architecture Development.

Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft (2023)
Presentation / Conference Contribution
Bai, G., Bozhko, S., Yang, T., Wheeler, P., & Yeoh, S. S. (2023). Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft. . https://doi.org/10.1109/itecasia-pacific59272.2023.10372301

The more-electric aircraft (MEA) has been seen as the most major trend in the aerospace industry. With the increase in electrified loads, there is the need to generate more electrical power on-board aircraft. Considering regional jet sized aircraft,... Read More about Power Flow Analysis of Advanced Power Generation Centre for More Electric Aircraft.

Design Analysis of SiC-MOSFET Based Bidirectional SSPC for Aircraft High Voltage DC Distribution Network (2023)
Journal Article
A. Khera, F., Bozhko, S., & Wheeler, P. (2023). Design Analysis of SiC-MOSFET Based Bidirectional SSPC for Aircraft High Voltage DC Distribution Network. IEEE Access, 11, 113900-13912. https://doi.org/10.1109/ACCESS.2023.3323599

Research on electric power systems (EPSs) for the aviation industry has recently grown significantly due to the need to reduce global CO2 emissions from transportation. To fulfill the power requirements of a more electric aircraft (MEA), DC power dis... Read More about Design Analysis of SiC-MOSFET Based Bidirectional SSPC for Aircraft High Voltage DC Distribution Network.

An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications (2023)
Journal Article
Guo, F., M. Diab, A., Shen Yeoh, S., Yang, T., Bozhko, S., Wheeler, P., & Zhao, Y. (2024). An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications. IEEE Transactions on Energy Conversion, 39(1), 356-367. https://doi.org/10.1109/TEC.2023.3312599

Since three-level neutral-point-clamped (3L-NPC) power generation units bring much competitiveness to the next-generation electric starter/generator (ESG) system for more-electric-aircraft (MEA) applications, the versatile multi-optimized pulse-width... Read More about An Advanced Dual-Carrier-Based Multi-Optimized PWM Strategy of Three-Level Neutral-Point-Clamped Converters for More-Electric-Aircraft Applications.

Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications (2023)
Presentation / Conference Contribution
Yan, X., Zhu, Y., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2023). Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications. In 2023 IEEE Workshop on Power Electronics for Aerospace Applications (PEASA). https://doi.org/10.1109/PEASA58318.2023.10235704

Half bridge active clamp (HBAC) converter is designed for the achievement of a wider voltage conversion range, and it is employed to interface the power transfer between the high voltage and low voltage DC buses in future electrified aircraft applica... Read More about Dual Phase Shift Modulation Investigation of Half-Bridge-Active-Clamp Converter for Future Electrified Aircraft Applications.

Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications (2023)
Presentation / Conference Contribution
Bai, G., Yang, T., Yeoh, S. S., Bozhko, S., & Wheeler, P. (2023). Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications. In 2023 IEEE Workshop on Power Electronics for Aerospace Applications (PEASA). https://doi.org/10.1109/PEASA58318.2023.10235443

To meet the increasing electrical power demand on More Electrical Aircraft (MEA), an advanced power generation architecture (APGA) is proposed. Within the APGA, both two generators produce electrical power and feed loads to the main DC bus through th... Read More about Control Strategy of Advanced Power Generation Architecture for More-Electric Aircraft Applications.

Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Bai, G., Urrutia-Ortiz, M., & Bozhko, S. (2024). Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 566-582. https://doi.org/10.1109/tte.2023.3289773

In the conventional droop control method employed in the primary control layer, there is an inherent tradeoff between current-sharing accuracy and voltage regulation. Consequently, to achieve both accurate current sharing and maintain the bus voltage... Read More about Artificial Intelligence-Based Hierarchical Control Design for Current Sharing and Voltage Restoration in DC Microgrid of the More Electric Aircraft.

Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application (2023)
Presentation / Conference Contribution
Yan, X., Zhu, Y., Wang, Z., Yang, T., Bozhko, S., & Wheeler, P. (2023). Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application. In 2023 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). https://doi.org/10.1109/ESARS-ITEC57127.2023.10114863

Dual active bridge converter (DAB) is an important power electronics in the DC distribution system of electric aircraft. It is used to convert generated high DC voltage to lower DC voltage, and it can be used between battery and low voltage bus to st... Read More about Simplified Modelling and Control of Dual Active Bridge Converter for Future Electrified Aerospace Application.

Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft (2023)
Journal Article
Hussaini, H., Yang, T., Gao, Y., Wang, C., Urrutia, M., & Bozhko, S. (2024). Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft. IEEE Transactions on Transportation Electrification, 10(1), 2192-2206. https://doi.org/10.1109/tte.2023.3271763

The design of the droop coefficient is one of the challenges for the droop control of converters, as it plays a key role in enhancing the performance of the droop control method. This article proposes an artificial neural network (ANN) based techniqu... Read More about Optimal Droop Control Design Using Artificial Intelligent Techniques for Electric Power Systems of More-Electric Aircraft.