Skip to main content

Research Repository

Advanced Search

Outputs (10)

Short review and prospective: chalcogenide glass mid-infrared fibre lasers (2024)
Journal Article
Seddon, A. B., Farries, M., Nunes, J. J., Xiao, B., Furniss, D., Barney, E., Phang, S., Chahal, S., Kalfagiannis, N., Sojka, Ł., & Sujecki, S. (2024). Short review and prospective: chalcogenide glass mid-infrared fibre lasers. European Physical Journal Plus, 139(2), Article 142. https://doi.org/10.1140/epjp/s13360-023-04841-1

Rare-earth ion doped, silica glass, optical fibre amplifiers have transformed the world by enabling high speed communications and the Internet. Fibre lasers, based on rare-earth ion doped silica glass optical fibres, achieve high optical powers and a... Read More about Short review and prospective: chalcogenide glass mid-infrared fibre lasers.

Deuterium occupation of interatomic hole sites in Ni67Zr33 amorphous alloy (2023)
Journal Article
Itoh, K., Saida, J., Barney, E. R., & Hannon, A. C. (2023). Deuterium occupation of interatomic hole sites in Ni67Zr33 amorphous alloy. Journal of Alloys and Compounds, 961, Article 171094. https://doi.org/10.1016/j.jallcom.2023.171094

The occupation of interatomic hole sites by deuterium in a deuterated Ni67Zr33 amorphous alloy was investigated using diffraction measurements and a combination of reverse Monte Carlo and molecular dynamics simulation techniques. The results show tha... Read More about Deuterium occupation of interatomic hole sites in Ni67Zr33 amorphous alloy.

Atomic structure of sodium iron phosphate glasses (2020)
Journal Article
Al‐Hasni, B. M., Mountjoy, G., & Barney, E. (2021). Atomic structure of sodium iron phosphate glasses. International Journal of Applied Glass Science, 12(2), 245-258. https://doi.org/10.1111/ijag.15865

The atomic structure of a series of sodium iron phosphate glasses is studied using different experimental techniques: X-ray and neutron diffraction (ND), infrared spectroscopy, extended X-ray absorption fine structure (EXAFS), and X-ray absorption ne... Read More about Atomic structure of sodium iron phosphate glasses.

Toward a Structural Model for the Aluminum Tellurite Glass System (2020)
Journal Article
Barney, E., Laorodphan, N., Mohd-Noor, F., Holland, D., Kemp, T., Iuga, D., & Dupree, R. (2020). Toward a Structural Model for the Aluminum Tellurite Glass System. Journal of Physical Chemistry C, 124(37), 20516–20529. https://doi.org/10.1021/acs.jpcc.0c04342

Neutron diffraction, 27Al MAS NMR, and 27Al Double Quantum MAS NMR results are presented and analyzed to determine the local environments of the cations in a series of aluminum tellurite glasses. Total scattering results show that, within a maximum T... Read More about Toward a Structural Model for the Aluminum Tellurite Glass System.

Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers (2020)
Journal Article
Crane, R. W., Sojka, Ł., Furniss, D., Nunes, J., Barney, E., Farries, M. C., …Seddon, A. B. (2020). Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers. Optics Express, 28(8), 12373-12384. https://doi.org/10.1364/oe.383033

1000 ppmw Sm3+-doped Ge19.4Sb9.7Se67.9Ga3 atomic % chalcogenide bulk glass and unstructured fiber are prepared. Near- and mid-infrared absorption spectra of the bulk glass reveal Sm3+ electronic absorption bands, and extrinsic vibrational absorption... Read More about Experimental photoluminescence and lifetimes at wavelengths including beyond 7 microns in Sm3+-doped selenide-chalcogenide glass fibers.

Thermal and crystallization kinetics of yttrium-doped phosphate-based glasses (2019)
Journal Article
Arafat, A., Samad, S. A., Wadge, M. D., Islam, M. T., Lewis, A. L., Barney, E. R., & Ahmed, I. (2020). Thermal and crystallization kinetics of yttrium-doped phosphate-based glasses. International Journal of Applied Glass Science, 11(1), 120-133. https://doi.org/10.1111/ijag.14163

© 2019 The American Ceramic Society and Wiley Periodicals, Inc Yttrium-doped glasses have been utilized for biomedical applications such as radiotherapy, especially for liver cancer treatment. In this paper, the crystallization behavior of phosphate-... Read More about Thermal and crystallization kinetics of yttrium-doped phosphate-based glasses.

Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers (2018)
Journal Article
Sujecki, S., Sojka, L., Pawlik, E., Anders, K., Piramidowicz, R., Tang, Z., Furniss, D., Barney, E., Benson, T., & Seddon, A. (2018). Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers. Journal of Luminescence, 199, https://doi.org/10.1016/j.jlumin.2018.03.031

In this contribution we use a numerical model to study the photoluminescence emitted by Tb3+ doped chalcogenide-selenide glass fibers pumped by laser light at approximately 3 µm. The model consists of the set of ordinary differential equations (ODEs)... Read More about Numerical analysis of spontaneous mid-infrared light emission from terbium ion doped multimode chalcogenide fibers.

Multicomposition EPSR: toward transferable potentials to model chalcogenide glass structures (2016)
Journal Article
Towey, J. J., & Barney, E. R. (2016). Multicomposition EPSR: toward transferable potentials to model chalcogenide glass structures. Journal of Physical Chemistry B, 120(51), 13169-13183. https://doi.org/10.1021/acs.jpcb.6b08793

The structure of xAs40Se60–(1 – x)As40S60 glasses, where x = 1.000, 0.667, 0.500, 0.333, 0.250, and 0.000, is investigated using a combination of neutron and X-ray diffraction coupled with computational modeling using multicomposition empirical poten... Read More about Multicomposition EPSR: toward transferable potentials to model chalcogenide glass structures.

Alkali environments in tellurite glasses (2015)
Journal Article
Barney, E. R., Hannon, A. C., Holland, D., Umesaki, N., & Tatsumisago, M. (2015). Alkali environments in tellurite glasses. Journal of Non-Crystalline Solids, 414, https://doi.org/10.1016/j.jnoncrysol.2015.01.023

Neutron diffraction measurements are reported for five binary alkali tellurite glasses, xM2O · (100 − x)TeO2 (containing 10 and 20 mol% K2O, 10 and 19 mol% Na2O, and 20 mol% 7Li2O), together with 23Na MAS NMR measurements for the sodium containing gl... Read More about Alkali environments in tellurite glasses.

Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited) (2014)
Journal Article
Oladeji, A., Sujecki, S., Phillips, A., Seddon, A. B., Benson, T. M., Sakr, H., Tang, Z., Barney, E., Furniss, D., Sójka, Ł., Bereś-Pawlik, E., Scholle, K., Lamrini, S., & Furberg, P. (2015). Theoretical study of population inversion in active doped MIR chalcogenide glass fibre lasers (invited). Optical and Quantum Electronics, 47(6), 1389-1395. https://doi.org/10.1007/s11082-014-0086-x