Skip to main content

Research Repository

Advanced Search

Outputs (39)

Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study (2015)
Journal Article
Jung, J., Bungert, A., Bowtell, R., & Jackson, S. R. (2016). Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study. Brain Stimulation, 9(1), 58-64. https://doi.org/10.1016/j.brs.2015.09.008

Background A common control condition for transcranial magnetic stimulation (TMS) studies is to apply stimulation at the vertex. An assumption of vertex stimulation is that it has relatively little influence over on-going brain processes involved in... Read More about Vertex Stimulation as a Control Site for Transcranial Magnetic Stimulation: A Concurrent TMS/fMRI Study.

Effects of white matter microstructure on phase and susceptibility maps (2015)
Journal Article
Wharton, S., & Bowtell, R. W. (in press). Effects of white matter microstructure on phase and susceptibility maps. Magnetic Resonance in Medicine, 173(3), https://doi.org/10.1002/mrm.25189

Purpose: To investigate the effects on quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI) of the frequency variation produced by the microstructure of white matter (WM). Methods: The frequency offsets in a WM tissue... Read More about Effects of white matter microstructure on phase and susceptibility maps.

Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG–BOLD–CBF study in humans (2014)
Journal Article
Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R. W., & Francis, S. T. (2014). Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG–BOLD–CBF study in humans. NeuroImage, 94, https://doi.org/10.1016/j.neuroimage.2014.02.029

Unambiguous interpretation of changes in the BOLD signal is challenging because of the complex neurovascular coupling that translates changes in neuronal activity into the subsequent haemodynamic response. In particular, the neurophysiological origin... Read More about Evidence that the negative BOLD response is neuronal in origin: a simultaneous EEG–BOLD–CBF study in humans.

Reference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI (2013)
Journal Article
Chowdhury, M. E., Mullinger, K. J., Glover, P., & Bowtell, R. W. (2014). Reference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI. NeuroImage, 84, 307-319. https://doi.org/10.1016/j.neuroimage.2013.08.039

Large artefacts compromise EEG data quality during simultaneous fMRI. These artefact voltages pose heavy demands on the bandwidth and dynamic range of EEG amplifiers and mean that even small fractional variations in the artefact voltages give rise to... Read More about Reference layer artefact subtraction (RLAS): A novel method of minimizing EEG artefacts during simultaneous fMRI.

Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity (2013)
Journal Article
Mullinger, K. J., Mayhew, S. D., Bagshaw, A. P., Bowtell, R., & Francis, S. T. (2013). Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity. Proceedings of the National Academy of Sciences, 110(33), https://doi.org/10.1073/pnas.1221287110

fMRI is the foremost technique for noninvasive measurement of human brain function. However, its utility is limited by an incomplete understanding of the relationship between neuronal activity and the hemodynamic response. Though the primary peak of... Read More about Poststimulus undershoots in cerebral blood flow and BOLD fMRI responses are modulated by poststimulus neuronal activity.

Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner (2013)
Journal Article
Mullinger, K. J., Havenhand, J., & Bowtell, R. W. (2013). Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner. NeuroImage, 71(1), https://doi.org/10.1016/j.neuroimage.2012.12.070

EEG recordings made during concurrent fMRI are confounded by the pulse artefact (PA), which although smaller than the gradient artefact is often more problematic because of its variability over multiple cardiac cycles. A better understanding of the P... Read More about Identifying the sources of the pulse artefact in EEG recordings made inside an MR scanner.

Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex (2013)
Journal Article

Ultra-high-field (UHF) MRI is ideally suited for structural and functional imaging of the brain. High-resolution structural MRI can be used to map the anatomical boundaries between functional domains of the brain by identifying changes related to the... Read More about Regional structural differences across functionally parcellated Brodmann areas of human primary somatosensory cortex.

Fiber orientation-dependent white matter contrast in gradient echo MRI (2012)
Journal Article
Wharton, S., & Bowtell, R. W. (2012). Fiber orientation-dependent white matter contrast in gradient echo MRI. Proceedings of the National Academy of Sciences, 109(45), https://doi.org/10.1073/pnas.1211075109

Recent studies have shown that there is a direct link between the orientation of the nerve fibers in white matter (WM) and the contrast observed in magnitude and phase images acquired using gradient echo MRI. Understanding the origin of this link is... Read More about Fiber orientation-dependent white matter contrast in gradient echo MRI.

Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject’s axial position (2011)
Journal Article
Mullinger, K. J., Yan, W. X., & Bowtell, R. W. (2011). Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject’s axial position. NeuroImage, 54(3), https://doi.org/10.1016/j.neuroimage.2010.09.079

Large artefacts which compromise EEG data quality are generated when electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are carried out concurrently. The gradient artefact produced by the time-varying magnetic field gradien... Read More about Reducing the gradient artefact in simultaneous EEG-fMRI by adjusting the subject’s axial position.