Skip to main content

Research Repository

Advanced Search

Outputs (78)

Submicrosecond entangling gate between trapped ions via Rydberg interaction (2020)
Journal Article
Zhang, C., Pokorny, F., Hennrich, M., Li, W., Lesanovsky, I., Higgins, G., & Pöschl, A. (2020). Submicrosecond entangling gate between trapped ions via Rydberg interaction. Nature, 580(7803), 345-349. https://doi.org/10.1038/s41586-020-2152-9

© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Generating quantum entanglement in large systems on timescales much shorter than the coherence time is key to powerful quantum simulation and computation. Trapped ions are amo... Read More about Submicrosecond entangling gate between trapped ions via Rydberg interaction.

Collectively enhanced chiral photon emission from an atomic array near a nanofiber (2020)
Journal Article
Jones, R., Buonaiuto, G., Lang, B., Lesanovsky, I., & Olmos, B. (2020). Collectively enhanced chiral photon emission from an atomic array near a nanofiber. Physical Review Letters, 124(9), Article 093601. https://doi.org/10.1103/physrevlett.124.093601

Emitter ensembles interact collectively with the radiation field. In the case of a one-dimensional array of atoms near a nanofiber, this collective light-matter interaction does not only lead to an increased photon coupling to the guided modes within... Read More about Collectively enhanced chiral photon emission from an atomic array near a nanofiber.

Shuttling of Rydberg ions for fast entangling operations (2019)
Journal Article
VOGEL, J., LI, W., MOKHBERI, A., LESANOVSKY, I., & SCHMIDT-KALER, F. (2019). Shuttling of Rydberg ions for fast entangling operations. Physical Review Letters, 123(15), Article 153603. https://doi.org/10.1103/PhysRevLett.123.153603

We introduce a scheme to entangle Rydberg ions in a linear ion crystal, using the high electric polarizability of the Rydberg electronic states in combination with mutual Coulomb coupling of ions that establishes common modes of motion. After laser i... Read More about Shuttling of Rydberg ions for fast entangling operations.

Dressed dense atomic gases (2019)
Journal Article
Lesanovsky, I., Olmos, B., Guerin, W., & Kaiser, R. (2019). Dressed dense atomic gases. Physical Review A, 100(2), Article 021401(R). https://doi.org/10.1103/PhysRevA.100.021401

The interaction between atomic transition dipoles and photons leads to the formation of many-body states with collective dissipation and long-ranged interactions. Here, we put forward and explore a scenario in which a dense atomic gas — where the sep... Read More about Dressed dense atomic gases.

Physical swap dynamics, shortcuts to relaxation, and entropy production in dissipative Rydberg gases (2019)
Journal Article
Gutiérrez, R., Garrahan, J. P., & Lesanovsky, I. (2019). Physical swap dynamics, shortcuts to relaxation, and entropy production in dissipative Rydberg gases. Physical Review E, 100(1), Article 012110. https://doi.org/10.1103/physreve.100.012110

Dense Rydberg gases are out-of-equilibrium systems where strong density-density interactions give rise to effective kinetic constraints. They cause dynamic arrest associated with highly constrained many-body configurations, leading to slow relaxation... Read More about Physical swap dynamics, shortcuts to relaxation, and entropy production in dissipative Rydberg gases.

Localization in spin chains with facilitation constraints and disordered interactions (2019)
Journal Article
Ostmann, M., Marcuzzi, M., Garrahan, J. P., & Lesanovsky, I. (2019). Localization in spin chains with facilitation constraints and disordered interactions. Physical Review A, 99(6), 1-7. https://doi.org/10.1103/PhysRevA.99.060101

Quantum many-body systems with kinetic constraints exhibit intriguing relaxation dynamics. Recent experimental progress in the field of cold atomic gases offers a handle for probing collective behavior of such systems, in particular for understanding... Read More about Localization in spin chains with facilitation constraints and disordered interactions.

Synthetic lattices, flat bands and localization in Rydberg quantum simulators (2019)
Journal Article
Ostmann, M., Marcuzzi, M., Minář, J., & Lesanovsky, I. (2019). Synthetic lattices, flat bands and localization in Rydberg quantum simulators. Quantum Science and Technology, 4(2), 1-8. https://doi.org/10.1088/2058-9565/aaf29d

© 2019 IOP Publishing Ltd. The most recent manifestation of cold Rydberg atom quantum simulators that employs tailored optical tweezer arrays enables the study of many-body dynamics under so-called facilitation conditions. We show how the facilitatio... Read More about Synthetic lattices, flat bands and localization in Rydberg quantum simulators.

Dissipative many-body physics of cold Rydberg atoms (2018)
Journal Article
Morsch, O., & Lesanovsky, I. (2018). Dissipative many-body physics of cold Rydberg atoms. Rivista del Nuovo Cimento, 41(7), 383-414. https://doi.org/10.1393/ncr/i2018-10149-7

In the last twenty years, Rydberg atoms have become a versatile and much studied system for implementing quantum many-body systems in the framework of quantum computation and quantum simulation. However, even in the absence of coherent evolution Ryd... Read More about Dissipative many-body physics of cold Rydberg atoms.

Quench dynamics of a dissipative Rydberg gas in the classical and quantum regimes (2018)
Journal Article
Gribben, D., Lesanovsky, I., & Gutierrez, R. (in press). Quench dynamics of a dissipative Rydberg gas in the classical and quantum regimes. Physical Review A, 97(1), https://doi.org/10.1103/PhysRevA.97.011603

Understanding the non-equilibrium behavior of quantum systems is a major goal of contemporary physics. Much research is currently focused on the dynamics of many-body systems in lowdimensional lattices following a quench, i.e., a sudden change of par... Read More about Quench dynamics of a dissipative Rydberg gas in the classical and quantum regimes.