Skip to main content

Research Repository

Advanced Search

Outputs (15)

Lytic xylan oxidases from wood-decay fungi unlock biomass degradation (2018)
Journal Article
Couturier, M., Ladevèze, S., Sulzenbacher, G., Ciano, L., Fanuel, M., Moreau, C., …Berrin, J.-G. (2018). Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nature Chemical Biology, 14(3), 306-310. https://doi.org/10.1038/nchembio.2558

Wood biomass is the most abundant feedstock envisioned for the development of modern biorefineries. However, the cost-effective conversion of this form of biomass into commodity products is limited by its resistance to enzymatic degradation. Here we... Read More about Lytic xylan oxidases from wood-decay fungi unlock biomass degradation.

Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates (2017)
Journal Article
Simmons, T. J., Frandsen, K. E. H., Ciano, L., Tryfona, T., Lenfant, N., Poulsen, J. C., …Dupree, P. (2017). Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates. Nature Communications, 8(1), Article 1064. https://doi.org/10.1038/s41467-017-01247-3

Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinu... Read More about Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates.

The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases (2016)
Journal Article
Frandsen, K. E. H., Simmons, T. J., Dupree, P., Poulsen, J. N., Hemsworth, G. R., Ciano, L., …Walton, P. H. (2016). The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases. Nature Chemical Biology, 12(4), 298-303. https://doi.org/10.1038/nchembio.2029

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes that oxidatively break down recalcitrant polysaccharides such as cellulose and chitin. Since their discovery, LPMOs have become integral factors in the industrial utilization o... Read More about The molecular basis of polysaccharide cleavage by lytic polysaccharide monooxygenases.

Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family (2015)
Journal Article
Yin, D., Urresti, S., Lafond, M., Johnston, E. M., Derikvand, F., Ciano, L., …Brumer, H. (2015). Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nature Communications, 6(1), Article 10197. https://doi.org/10.1038/ncomms10197

Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase fam... Read More about Structure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family.