Skip to main content

Research Repository

Advanced Search

Outputs (2)

Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture (2021)
Journal Article
Gupta, D., Hossain, K. M. Z., Roe, M., Smith, E. F., Ahmed, I., Sottile, V., & Grant, D. M. (2021). Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture. ACS Applied Bio Materials, 4(8), 5987-6004. https://doi.org/10.1021/acsabm.1c00120

Phosphate-based glasses (PBGs) are biomaterials that degrade under physiological conditions and can be modified to release various ions depending on end applications. This study utilized slow-degrading (P45:45P2O5-16CaO-24MgO-11Na2O10 4Fe2O3, mol %)... Read More about Long-Term Culture of Stem Cells on Phosphate-Based Glass Microspheres: Synergistic Role of Chemical Formulation and 3D Architecture.

Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics (2020)
Journal Article
Lei, L., Li, M., Grant, D. M., Yang, S., Yu, Y., Watts, J. A., & Amabilino, D. B. (2020). Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics. Chemistry of Materials, 32(14), 5958–5972. https://doi.org/10.1021/acs.chemmater.0c00798

Delicate morphology and defect control are crucial for high-performance optoelectronics. For metal halide perovskites, antisolvent precipitation is the most common process to realize the control and develop the state-of-art devices. However, the solu... Read More about Morphology and Defect Control of Metal Halide Perovskite Films for High-Performance Optoelectronics.