Skip to main content

Research Repository

Advanced Search

Outputs (2)

In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray (2020)
Journal Article
Bano, S., Romero, A. R., Grant, D., Nommeots-Nomm, A., Scotchford, C., Ahmed, I., & Hussain, T. (2021). In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray. Surface and Coatings Technology, 407, Article 126764. https://doi.org/10.1016/j.surfcoat.2020.126764

ICIE16 and 13-93 bioactive glasses have been proposed as alternative chemically stable compositions in physiological fluid keeping bioactivity comparable to Bioglass®. ICIE16 and 13-93 bioactive glasses coatings were produced via an emerging suspensi... Read More about In-vitro cell interaction and apatite forming ability in simulated body fluid of ICIE16 and 13-93 bioactive glass coatings deposited by an emerging suspension high velocity oxy fuel (SHVOF) thermal spray.

Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites (2020)
Journal Article
Hu, C., Le, A. T., Pung, S. Y., Stevens, L., Neate, N., Hou, X., …Xu, F. (2021). Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites. Materials Chemistry and Physics, 260, Article 124117. https://doi.org/10.1016/j.matchemphys.2020.124117

The nickel nanoparticles decorated graphene oxide-carbon nanotubes nanocomposite has been prepared through a novel molecular-level-mixing method followed by a freeze-drying and subsequent reduction process. The resulting products showed a well-disper... Read More about Efficient dye-removal via Ni-decorated graphene oxide-carbon nanotube nanocomposites.