Skip to main content

Research Repository

Advanced Search

Dr DARREN WELLS's Outputs (4)

Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet (2023)
Preprint / Working Paper
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet.

Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice (2023)
Journal Article
Robson, J. K., Ferguson, J. N., McAusland, L., Atkinson, J. A., Tranchant-Dubreuil, C., Cubry, P., Sabot, F., Wells, D. M., Price, A. H., Wilson, Z. A., & Murchie, E. H. (2023). Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice. Journal of Experimental Botany, 74(17), 5181-5197. https://doi.org/10.1093/jxb/erad239

Rising temperatures and extreme heat events threaten rice production. Half of the global population relies on rice for basic nutrition, and therefore developing heat-tolerant rice is essential. During vegetative development, reduced photosynthetic ra... Read More about Chlorophyll fluorescence-based high-throughput phenotyping facilitates the genetic dissection of photosynthetic heat tolerance in African (Oryza glaberrima) and Asian (Oryza sativa) rice.

Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters (2023)
Journal Article
Ware, A., Jones, D. H., Flis, P., Chrysanthou, E., Smith, K. E., Kümpers, B. M., Yant, L., Atkinson, J. A., Wells, D. M., Bhosale, R., & Bishopp, A. (2023). Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters. Current Biology, 33(9), 1795-1802. https://doi.org/10.1016/j.cub.2023.03.025

Organ loss occurs frequently during plant and animal evolution. Sometimes, non-functional organs are retained through evolution. Vestigial organs are defined as genetically determined structures that have lost their ancestral (or salient) function. D... Read More about Loss of ancestral function in duckweed roots is accompanied by progressive anatomical reduction and a re-distribution of nutrient transporters.

Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet (2023)
Preprint / Working Paper
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth confers early drought stress tolerance in pearl millet.