Skip to main content

Research Repository

Advanced Search

Miss MENGTING YAO's Outputs (5)

Optoacoustic lenses for lateral sub-optical resolution elasticity imaging (2024)
Journal Article
Yao, M., Fuentes-Dominguez, R., La Cavera III, S., Perez-Cota, F., Smith, R. J., & Clark, M. (2025). Optoacoustic lenses for lateral sub-optical resolution elasticity imaging. Photoacoustics, 41, Article 100663. https://doi.org/10.1016/j.pacs.2024.100663

In this paper, we demonstrate for the first time the focusing of gigahertz coherent phonon pulses propagating in water using picosecond ultrasonics and Brillouin light scattering. We achieve this by using planar Fresnel zone plate and concave lenses... Read More about Optoacoustic lenses for lateral sub-optical resolution elasticity imaging.

Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology (2024)
Journal Article
La Cavera, S., Chauhan, V. M., Hardiman, W., Yao, M., Fuentes-Domínguez, R., Setchfield, K., Abayzeed, S. A., Pérez-Cota, F., Smith, R. J., & Clark, M. (2024). Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology. Communications Biology, 7(1), Article 451. https://doi.org/10.1038/s42003-024-06126-4

This report presents an optical fibre-based endo-microscopic imaging tool that simultaneously measures the topographic profile and 3D viscoelastic properties of biological specimens through the phenomenon of time-resolved Brillouin scattering. This u... Read More about Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology.

Parallel imaging with phonon microscopy using a multi-core fibre bundle detection (2023)
Journal Article
Fuentes-Domínguez, R., Yao, M., Hardiman, W., La Cavera III, S., Setchfield, K., Pérez-Cota, F., Smith, R. J., & Clark, M. (2023). Parallel imaging with phonon microscopy using a multi-core fibre bundle detection. Photoacoustics, 31, Article 100493. https://doi.org/10.1016/j.pacs.2023.100493

In this paper, we show a proof-of-concept method to parallelise phonon microscopy measurements for cell elasticity imaging by demonstrating a 3-fold increase in acquisition speed which is limited by current acquisition hardware. Phonon microscopy is... Read More about Parallel imaging with phonon microscopy using a multi-core fibre bundle detection.

Design of a resonant Luneburg lens for surface acoustic waves (2020)
Journal Article
Fuentes-Domínguez, R., Yao, M., Colombi, A., Dryburgh, P., Pieris, D., Jackson-Crisp, A., Colquitt, D., Clare, A., Smith, R. J., & Clark, M. (2021). Design of a resonant Luneburg lens for surface acoustic waves. Ultrasonics, 111, Article 106306. https://doi.org/10.1016/j.ultras.2020.106306

© 2020 In this work we employ additive manufacturing to print a circular array of micropillars on an aluminium slab turning its top surface into a graded index metasurface for surface acoustic waves (SAW). The graded metasurface reproduces a Luneburg... Read More about Design of a resonant Luneburg lens for surface acoustic waves.

Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells (2020)
Journal Article
Pérez-Cota, F., Fuentes-Domínguez, R., La Cavera III, S., Hardiman, W., Yao, M., Setchfield, K., Moradi, E., Naznin, S., Wright, A., Webb, K. F., Huett, A., Friel, C., Sottile, V., Elsheikha, H. M., Smith, R. J., & Clark, M. (2020). Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells. Journal of Applied Physics, 128(16), Article 160902. https://doi.org/10.1063/5.0023744

© 2020 Author(s). Characterization of the elasticity of biological cells is growing as a new way to gain insight into cell biology. Cell mechanics are related to most aspects of cellular behavior, and applications in research and medicine are broad.... Read More about Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells.