Skip to main content

Research Repository

Advanced Search

MARIA MARLOW's Outputs (4)

Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo (2019)
Journal Article
Faidra Angelerou, M. G., Markus, R., Paraskevopoulou, V., Foralosso, R., Clarke, P., Alvarez, C. V., …Marlow, M. (2020). Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo. Journal of Controlled Release, 317, 118-129. https://doi.org/10.1016/j.jconrel.2019.10.011

Supramolecular gels have recently emerged as promising biomaterials for the delivery of a wide range of bioactive molecules, from small hydrophobic drugs to large biomolecules such as proteins. Although it has been demonstrated that each encapsulated... Read More about Mechanistic investigations into the encapsulation and release of small molecules and proteins from a supramolecular nucleoside gel in vitro and in vivo.

Role of Self‐Assembly Conditions and Amphiphilic Balance on Nanoparticle Formation of PEG‐PDLLA Copolymers in Aqueous Environments (2019)
Journal Article
Phan, H., Minut, R. I., McCrorie, P., Vasey, C., Larder, R. R., Krumins, E., …Pearce, A. K. (2019). Role of Self‐Assembly Conditions and Amphiphilic Balance on Nanoparticle Formation of PEG‐PDLLA Copolymers in Aqueous Environments. Journal of Polymer Science Part A: Polymer Chemistry, 57(17), 1801-1810. https://doi.org/10.1002/pola.29451

The production of well-defined and reproducible poly-meric nanoparticles (NPs), in terms of size and stability in biological environments, is undoubtedly a fundamental challenge in the formulation of novel and more effective nanomedicines. The adopti... Read More about Role of Self‐Assembly Conditions and Amphiphilic Balance on Nanoparticle Formation of PEG‐PDLLA Copolymers in Aqueous Environments.

A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs (2019)
Journal Article
Štaka, I., Cadete, A., Surikutchi, B. T., Abuzaid, H., Bradshaw, T. D., Alonso, M. J., & Marlow, M. (2019). A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs. International Journal of Pharmaceutics, 565, 151-161. https://doi.org/10.1016/j.ijpharm.2019.04.070

Herein, an injectable formulation composed of a low molecular weight gelator (LMWG) based hydrogel and drug-loaded polymeric nanocapsules (NCs) is described. The NCs, made of hyaluronic acid and polyglutamic acid and loaded with C14-Gemcitabine (GEM... Read More about A novel low molecular weight nanocomposite hydrogel formulation for intra-tumoural delivery of anti-cancer drugs.

Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment (2019)
Journal Article
Al-Mayahy, M. H., Sabri, A. H., Rutland, C. S., Holmes, A., McKenna, J., Marlow, M., & Scurr, D. J. (2019). Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment. European Journal of Pharmaceutics and Biopharmaceutics, 139, 33-43. https://doi.org/10.1016/j.ejpb.2019.02.006

Basal cell carcinoma (BCC) is the most common skin cancer in humans. Topical treatment with imiquimod provides a non-invasive, self-administered treatment with relatively low treatment cost. Despite displaying excellent efficacy, imiquimod is only li... Read More about Insight into imiquimod skin permeation and increased delivery using microneedle pre-treatment.