Skip to main content

Research Repository

Advanced Search

Dr DARREN WELLS's Outputs (3)

Supporting data for "Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping" (2016)
Data
(2016). Supporting data for "Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping". [Data]. https://doi.org/10.5524/100343

In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection; hence the motivation... Read More about Supporting data for "Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping".

Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor (2016)
Journal Article
Goh, T., Toyokura, K., Wells, D. M., Swarup, K., Yamamoto, M., Mimura, T., Weijers, D., Fukaki, H., Laplaze, L., Bennett, M. J., & Guyomarc'h, S. (2016). Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor. Development, 143(18), 3363-3371. https://doi.org/10.1242/dev.135319

Lateral root (LR) formation is an important determinant of root system architecture. In Arabidopsis, LRs originate from pericycle cells, which undergo a programme of morphogenesis to generate a new LR meristem. Despite its importance for root meriste... Read More about Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor.

Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots (2016)
Journal Article
Passot, S., Gnacko, F., Moukouanga, D., Lucas, M., Guyomarc’h, S., Ortega, B. M., Atkinson, J. A., Belko, M. N., Bennett, M. J., Gantet, P., Wells, D. M., Guédon, Y., Vigouroux, Y., Verdeil, J.-L., Muller, B., & Laplaze, L. (2016). Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Frontiers in Plant Science, 7(June2016), https://doi.org/10.3389/fpls.2016.00829

© 2016 Passot, Gnacko, Moukouanga, Lucas, Guyomarc’h, Moreno Ortega, Atkinson, Belko, Bennett, Gantet, Wells, Guédon, Vigouroux, Verdeil, Muller and Laplaze. Pearl millet plays an important role for food security in arid regions of Africa and India.... Read More about Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots.