Skip to main content

Research Repository

Advanced Search

Outputs (46)

Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR (2024)
Journal Article
Austin, J. S., Xiao, W., Wang, F., Cottam, N. D., Rivers, G., Ward, E. B., …James, T. S. (2024). Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR. Journal of Materials Chemistry C, https://doi.org/10.1039/D4TC01917B

Colloidal low-dimensional photo-sensitive nanomaterials have attracted significant interest for optoelectronic device applications where inkjet printing offers a high accuracy and low waste route for their deposition on silicon-based, as well as flex... Read More about Developing colloidal nanoparticles for inkjet printing of devices with optical properties tuneable from the UV to the NIR.

Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient (2024)
Journal Article
Rivers, G., Lion, A., Rofiqoh Eviana Putri, N., Rance, G., Moloney, C., Taresco, V., …He, Y. (2024). Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient. Materials Today Advances, 22, Article 100493. https://doi.org/10.1016/j.mtadv.2024.100493

Additive manufacturing offers manufacture of personalised pharmaceutical tablets through design freedoms and material deposition control at an individual voxel level. This control goes beyond geometry and materials choices: inkjet based 3D printing e... Read More about Enabling High-fidelity Personalized Pharmaceutical Tablets through Multimaterial Inkjet 3D Printing with a Water-soluble Excipient.

Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide (2024)
Journal Article
Cassioli, M. L., Fay, M., Turyanska, L., Bradshaw, T. D., Thomas, N. R., & Pordea, A. (2024). Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide. RSC Advances, 14(20), 14008-14016. https://doi.org/10.1039/d3ra07430g

Protein capsules are promising drug delivery vehicles for cancer research therapies. Apoferritin (AFt) is a self-assembling 12 nm diameter hollow nanocage with many desirable features for drug delivery, however, control of drug retention inside the p... Read More about Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide.

arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T (2024)
Journal Article
Cottam, N. D., Wang, F., Austin, J. S., Tuck, C. J., Hague, R., Fromhold, M., Escoffier, W., Goiran, M., Pierre, M., Makarovsky, O., & Turyanska, L. (2024). arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T. Small, 20(30), Article 2311416. https://doi.org/10.1002/smll.202311416

Inkjet‐printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to... Read More about arch Article Open Access Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T.

Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+ (2024)
Journal Article
Xiao, W., Chen, J., Wang, F., Luan, W., Wu, Y., & Turyanska, L. (2024). Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+. Advanced Optical Materials, 12(16), Article 2303132. https://doi.org/10.1002/adom.202303132

NaYbF4 upconverting nanoparticles (UCNPs) have enhanced optical properties compared to the NaYF4 UCNPs. However, synthesis of monodisperse NaYbF4 with controllable size and optical properties poses challenges, and the mechanism of phase transformatio... Read More about Lattice strain enhanced phase transformation of NaYbF4: 2% Er3+ upconverting nanoparticles by tuning the molar ratio of Na+/Yb3+.

Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy” (2023)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D., Lim, K., …Bradshaw, T. D. (2024). Correction to “Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy”. ACS Omega, 9(1), Article 2012. https://doi.org/10.1021/acsomega.3c09291

Neil R. Thomas was added as an author. The change in authorship is reflected in the authorship of this Correction.

Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution (2023)
Journal Article
Nelson-Dummett, O., Rivers, G., Gilani, N., Simonelli, M., Tuck, C. J., Wildman, R. D., …Turyanska, L. (2024). Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution. Additive Manufacturing Letters, 8, Article 100185. https://doi.org/10.1016/j.addlet.2023.100185

Drop-on-Demand additive manufacturing could offer a facile solution for scalable on-site manufacturing. With an increasing number of functional materials available for this technology, there are growing opportunities for applications, such as electro... Read More about Off the Grid: a new strategy for material-jet 3D printing with enhanced sub-droplet resolution.

Dual‐Defect Manipulation Enables Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes (2023)
Journal Article
Zhang, C., Yuan, H., Kong, L., Wang, L., Wang, Y., Li, Y., …Yang, X. (2023). Dual‐Defect Manipulation Enables Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes. Advanced Optical Materials, 11(14), Article 2300147. https://doi.org/10.1002/adom.202300147

Performance of blue solution‐processed perovskite light‐emitting diodes (LEDs) is limited by availability of blue perovskite materials. Herein, 4‐(trifluoromethyl)benzoyl ammonium bromide (4‐TMBABr) is used with abundant N H and C O groups to passiva... Read More about Dual‐Defect Manipulation Enables Efficient and Spectrally Stable Blue Perovskite Light‐Emitting Diodes.

Efficient All-Perovskite White Light-Emitting Diodes Made of In Situ Grown Perovskite-Mesoporous Silica Nanocomposites (2023)
Journal Article
Fan, M., Huang, J., Turyanska, L., Bian, Z., Wang, L., Xu, C., …Yang, X. (2023). Efficient All-Perovskite White Light-Emitting Diodes Made of In Situ Grown Perovskite-Mesoporous Silica Nanocomposites. Advanced Functional Materials, 33(19), Article 2215032. https://doi.org/10.1002/adfm.202215032

Metal halide perovskite quantum dots (QDs) have emerged as potential materials for high brightness, wide color gamut, and cost-effective backlight emission due to their high photoluminescence quantum yields, narrow emission linewidths, and tunable ba... Read More about Efficient All-Perovskite White Light-Emitting Diodes Made of In Situ Grown Perovskite-Mesoporous Silica Nanocomposites.

Correction: Atomically flat semiconductor nanoplatelets for light-emitting applications (2023)
Journal Article
Bai, B., Zhang, C., Dou, Y., Kong, L., Wang, S., Li, J., …Jia, G. (2023). Correction: Atomically flat semiconductor nanoplatelets for light-emitting applications. Chemical Society Reviews, 52(4), 1519. https://doi.org/10.1039/d3cs90022c

Correction for ‘Atomically flat semiconductor nanoplatelets for light-emitting applications’ by Bing Bai et al., Chem. Soc. Rev., 2023, 52, 318–360, https://doi.org/10.1039/D2CS00130F. The authors regret that there was an error in the spelling of... Read More about Correction: Atomically flat semiconductor nanoplatelets for light-emitting applications.

Graphene FETs with high and low mobilities have universal temperature-dependent properties (2023)
Journal Article
Gosling, J., Morozov, S. V., Vdovin, E. E., Greenaway, M. T., Khanin, Y. N., Kudrynskyi, Z., …Makarovsky, O. (2023). Graphene FETs with high and low mobilities have universal temperature-dependent properties. Nanotechnology, 34(12), Article 125702. https://doi.org/10.1088/1361-6528/aca981

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobili... Read More about Graphene FETs with high and low mobilities have universal temperature-dependent properties.

Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals (2022)
Journal Article
Austin, J. S., Cottam, N. D., Zhang, C., Wang, F., Gosling, J. H., Nelson-Dummet, O., …Turyanska, L. (2023). Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals. Nanoscale, 15(5), 2134–2142. https://doi.org/10.1039/d2nr06429d

All-inorganic perovskite nanocrystals (NCs) with enhanced environmental stability are of particular interest for optoelectronic applications. Here we report on the formulation of CsPbX3 (X is Br or I) inks for inkjet deposition and utilise these NCs... Read More about Photosensitisation of inkjet printed graphene with stable all-inorganic perovskite nanocrystals.

Atomically flat semiconductor nanoplatelets for light-emitting applications (2022)
Journal Article
Bai, B., Zhang, C., Dou, Y., Kong, L., Wang, L., Wang, S., …Jia, G. (2023). Atomically flat semiconductor nanoplatelets for light-emitting applications. Chemical Society Reviews, 52(1), 318-360. https://doi.org/10.1039/d2cs00130f

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applic... Read More about Atomically flat semiconductor nanoplatelets for light-emitting applications.

Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors (2022)
Journal Article
Cottam, N. D., Austin, J. S., Zhang, C., Patanè, A., Escoffier, W., Goiran, M., …Makarovsky, O. (2023). Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors. Advanced Electronic Materials, 9(2), Article 2200995. https://doi.org/10.1002/aelm.202200995

Stable all-inorganic CsPbX3 perovskite nanocrystals (PNCs) with high optical yield can be used in combination with graphene as photon sensors with high responsivity (up to 106 A W−1) in the VIS-UV range. The performance of these perovskite/graphene f... Read More about Magnetic and Electric Field Dependent Charge Transfer in Perovskite/Graphene Field Effect Transistors.

Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing (2022)
Journal Article
Zhang, C., Chen, J., Turyanska, L., Wang, J., Wang, W., Wang, L., …Yang, X. (2023). Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing. Advanced Functional Materials, 33(3), Article 2211466. https://doi.org/10.1002/adfm.202211466

Self-assembly of nanocrystals into controlled structures while uncompromising their properties is one of the key steps in optoelectronic device fabrication. Herein, zigzag CsPbBr3 perovskite nanocrystals are demonstrated with a precise number of comp... Read More about Highly Controlled Zigzag Perovskite Nanocrystals Enabled by Dipole-Induced Self-Assembly of Nanocubes for Low-Threshold Amplified Spontaneous Emission and Lasing.

A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and High‐Luminance Quasi‐2D Perovskite LEDs (2022)
Journal Article
Kong, L., Luo, Y., Turyanska, L., Zhang, T., Zhang, Z., Xing, G., …Yang, X. (2022). A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and High‐Luminance Quasi‐2D Perovskite LEDs. Advanced Functional Materials, Article 2209186. https://doi.org/10.1002/adfm.202209186

Quasi‐2D Ruddlesden‐Popper perovskites receive tremendous attention for application in light‐emitting diodes (LEDs). However, the role of organic ammonium spacers on perovskite film has not been fully‐understood. Herein, a spacer cation assisted pero... Read More about A Spacer Cation Assisted Nucleation and Growth Strategy Enables Efficient and High‐Luminance Quasi‐2D Perovskite LEDs.

Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy (2022)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D. H., Lim, K. H., Kam, T. S., Turyanska, L., & Bradshaw, T. D. (2022). Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy. ACS Omega, 7(25), 21473–21482. https://doi.org/10.1021/acsomega.2c00997

The O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI 50 < 0.38 μM), targeting mic... Read More about Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy.

Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy (2022)
Journal Article
Abuzaid, H., Abdelrazig, S., Ferreira, L., Collins, H. M., Kim, D.-H., Lim, K.-H., …Bradshaw, T. (2022). Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy. ACS Omega, 7(25), 21473-21482. https://doi.org/10.1021/acsomega.2c00997

he O-acetyl (or acetate) derivative of the Aspidosperma alkaloid Jerantinine A (JAa) elicits anti-tumor activity against cancer cell lines including mammary carcinoma cell lines irrespective of receptor status (0.14 < GI50 < 0.38 μM), targeting micro... Read More about Apoferritin-Encapsulated Jerantinine A for Transferrin Receptor Targeting and Enhanced Selectivity in Breast Cancer Therapy.

Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology (2021)
Journal Article
Kuruppu, A. I., Turyanska, L., Bradshaw, T. D., Manickam, S., Galhena, B. P., Paranagama, P., & De Silva, R. (2022). Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology. BBA - General Subjects, 1866(2), Article 130067. https://doi.org/10.1016/j.bbagen.2021.130067

Background: The ideal nanoparticle should be able to encapsulate either pharmaceutical agents or imaging probes so that it could treat or image clinical tumours by targeting the cancer site efficiently. Further, it would be an added advantage if it d... Read More about Apoferritin and Dps as drug delivery vehicles: Some selected examples in oncology.

Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure (2021)
Journal Article
Kong, L., Wu, J., Li, Y., Cao, F., Wang, F., Wu, Q., …Yang, X. (2022). Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure. Science Bulletin, 67(5), 529-536. https://doi.org/10.1016/j.scib.2021.12.013

Emerging quantum dots (QDs) based light-emitting field-effect transistors (QLEFETs) could generate light emission with high color purity and provide facile route to tune optoelectronic properties at a low fabrication cost. Considerable efforts have b... Read More about Light-emitting field-effect transistors with EQE over 20% enabled by a dielectric-quantum dots-dielectric sandwich structure.

Near-infrared PbS quantum dots functionalized with affibodies and ZnPP for targeted imaging and therapeutic applications (2021)
Journal Article
Al-Ani, A. W., Zamberlan, F., Ferreira, L., Bradshaw, T. D., Thomas, N. R., & Turyanska, L. (2021). Near-infrared PbS quantum dots functionalized with affibodies and ZnPP for targeted imaging and therapeutic applications. Nano Express, 2(4), Article 040005. https://doi.org/10.1088/2632-959x/ac33b8

We report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker... Read More about Near-infrared PbS quantum dots functionalized with affibodies and ZnPP for targeted imaging and therapeutic applications.

CsPb(Br/I)3Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes (2021)
Journal Article
Ma, Z., Li, X., Zhang, C., Turyanska, L., Lin, S., Xi, X., …Zhao, L. (2021). CsPb(Br/I)3Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes. ACS Applied Nano Materials, 4(8), 8383-8389. https://doi.org/10.1021/acsanm.1c01604

The modulation bandwidth of white light emitting diodes (LEDs) is an important factor in visible light communication (VLC) system, which is mainly limited by the down-conversion materials. The broad spectrum and long lifetime of conventional light co... Read More about CsPb(Br/I)3Perovskite Nanocrystals for Hybrid GaN-Based High-Bandwidth White Light-Emitting Diodes.

Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals (2021)
Journal Article
Cottam, N. D., Zhang, C., Wildman, J. L., Patanè, A., Turyanska, L., & Makarovsky, O. (2021). Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 9(13), Article 2100104. https://doi.org/10.1002/adom.202100104

Inorganic perovskite nanocrystals (NCs) have demonstrated a number of unique optical and electronic properties for optoelectronic applications. However, the physical properties of these nanostructures, such as the dynamics of charge carriers on diffe... Read More about Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals.

Cr2O3 nanoparticles boosting Cr–N–C for highly efficient electrocatalysis in acidic oxygen reduction reaction (2021)
Journal Article
Jiang, T., Luan, W., Turyanska, L., & Feng, Q. (2021). Cr2O3 nanoparticles boosting Cr–N–C for highly efficient electrocatalysis in acidic oxygen reduction reaction. International Journal of Hydrogen Energy, 46(36), 18913-18921. https://doi.org/10.1016/j.ijhydene.2021.03.034

Transition metal–nitrogen–carbon (M–N–C) catalysts have attracted significant attention for catalyzing oxygen reduction reactions (ORR). In this study, a porous Cr O @Cr–N–C catalyst with a small amount of Cr O nanoparticles loaded on the surface of... Read More about Cr2O3 nanoparticles boosting Cr–N–C for highly efficient electrocatalysis in acidic oxygen reduction reaction.

Enhanced electrocatalytic oxygen reduction reaction for Fe-N4-C by the incorporation of Co nanoparticles (2021)
Journal Article
Jiang, T., Luan, W., Turyanska, L., & Feng, Q. (2021). Enhanced electrocatalytic oxygen reduction reaction for Fe-N4-C by the incorporation of Co nanoparticles. Nanoscale, 13(13), 6521-6530. https://doi.org/10.1039/d1nr00727k

Oxygen reduction reaction (ORR) catalytic activity can be improved by means of enhancing the synergy between transition metals. In this work, a novel porous Fe-N4-C nanostructure containing uniformly dispersed Co nanoparticles (CoNPs) is prepared by... Read More about Enhanced electrocatalytic oxygen reduction reaction for Fe-N4-C by the incorporation of Co nanoparticles.

Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications (2021)
Journal Article
Zhang, C., Chen, J., Kong, L., Wang, L., Wang, S., Chen, W., …Yang, X. (2021). Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications. Advanced Functional Materials, 31(19), Article 2100438. https://doi.org/10.1002/adfm.202100438

© 2021 Wiley-VCH GmbH Core/shell structured metal halide perovskite nanocrystals (NCs) are emerging as a type of material with remarkable optical and electronic properties. Research into this field has been developing and expanding rapidly in recent... Read More about Core/Shell Metal Halide Perovskite Nanocrystals for Optoelectronic Applications.

Universal mobility characteristics of graphene originating from charge scattering by ionised impurities (2021)
Journal Article
Gosling, J. H., Makarovsky, O., Wang, F., Cottam, N. D., Greenaway, M. T., Patanè, A., …Fromhold, T. M. (2021). Universal mobility characteristics of graphene originating from charge scattering by ionised impurities. Communications Physics, 4(1), Article 30. https://doi.org/10.1038/s42005-021-00518-2

Pristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrie... Read More about Universal mobility characteristics of graphene originating from charge scattering by ionised impurities.

Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices (2020)
Journal Article
Wang, F., Gosling, J. H., Rance, G. A., Trindade, G. F., Makarovsky, O., Cottam, N. D., …Turyanska, L. (2021). Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices. Advanced Functional Materials, 31(5), Article 2007478. https://doi.org/10.1002/adfm.202007478

© 2020 The Authors. Advanced Functional Materials published by Wiley-VCH GmbH 2D materials have unique structural and electronic properties with potential for transformative device applications. However, such devices are usually bespoke structures ma... Read More about Inter-Flake Quantum Transport of Electrons and Holes in Inkjet-Printed Graphene Devices.

Synergistic heat treatment derived hollow-mesoporous-microporous Fe–N–C-SHT electrocatalyst for oxygen reduction reaction (2020)
Journal Article
Jiang, T., Luan, W., Ren, Y., Fan, C., Feng, Q., & Turyanska, L. (2020). Synergistic heat treatment derived hollow-mesoporous-microporous Fe–N–C-SHT electrocatalyst for oxygen reduction reaction. Microporous and Mesoporous Materials, 305, Article 110382. https://doi.org/10.1016/j.micromeso.2020.110382

© 2020 Exploring an economical and efficient oxygen reduction reaction (ORR) is an essential but challenging field of study. Metal–organic frameworks (MOFs) have emerged as promising candidates for the preparation of porous catalysts. Here we propose... Read More about Synergistic heat treatment derived hollow-mesoporous-microporous Fe–N–C-SHT electrocatalyst for oxygen reduction reaction.

Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr3/CsPbBr3 for LED Applications (2020)
Journal Article
Wang, S., Zhang, C., Li, X., Yuan, M., Turyanska, L., & Yang, X. (2020). Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr3/CsPbBr3 for LED Applications. Advanced Functional Materials, Article 1910582. https://doi.org/10.1002/adfm.201910582

© 2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Lead halide perovskite nanocrystals (PeNCs) are promising materials for applications in optoelectronics. However, their environmental instability remains to be addressed to... Read More about Core/Shell Perovskite Nanocrystals: Synthesis of Highly Efficient and Environmentally Stable FAPbBr3/CsPbBr3 for LED Applications.

New Treatments in Renal Cancer: The AhR Ligands (2020)
Journal Article
Turyanska, L., Itkin, B., Breen, A., Loaiza-Perez, A. I., Sandes, E. O., & Bradshaw, T. D. (2020). New Treatments in Renal Cancer: The AhR Ligands. International Journal of Molecular Sciences, 21(10), Article 3551. https://doi.org/10.3390/ijms21103551

Kidney cancer rapidly acquires resistance to antiangiogenic agents, such as sunitinib, developing an aggressive migratory phenotype (facilitated by c-Metsignal transduction). The Aryl hydrocarbon receptor (AhR) has recently been postulated as a molec... Read More about New Treatments in Renal Cancer: The AhR Ligands.

DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments (2020)
Journal Article
Huang, Y., Luan, W., Liu, M., & Turyanska, L. (2020). DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments. Journal of Materials Chemistry C, 8(7), 2381-2387. https://doi.org/10.1039/c9tc06566k

© 2020 The Royal Society of Chemistry. All-inorganic cesium lead halide perovskite (CsPbX3, X = Cl, Br, I) nanocrystals (NCs) have attracted considerable attention due to their tunable optical properties and high optical quantum yield. However, their... Read More about DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments.

Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors (2019)
Journal Article
Cottam, N. D., Zhang, C., Turyanska, L., Eaves, L., Kudrynskyi, Z., Vdovin, E. E., …Makarovsky, O. (2020). Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors. ACS Applied Electronic Materials, 2, 147-154. https://doi.org/10.1021/acsaelm.9b00664

Recent progress in the synthesis of high stability inorganic perovskite nanocrystals (NCs) has led to their increasing use in broadband photodetectors. These NCs are of particular interest for the UV range as they have the potential to extend the wav... Read More about Defect-assisted high photoconductive UV-VIS gain in perovskite-decorated graphene transistors.

Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery (2019)
Journal Article
Breen, A. F., Scurr, D., Cassioli, M. L., Wells, G., Thomas, N. R., Zhang, J., …Bradshaw, T. D. (2019). Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery. International Journal of Nanomedicine, 14, 9525-9534. https://doi.org/10.2147/IJN.S226293

Introduction: Advancment of novel anticancer drugs into clinic is frequently halted by their lack of solubility, reduced stability under physiological conditions, and non-specific uptake by normal tissues, causing systemic toxicity. Their progress to... Read More about Protein Encapsulation of Experimental Anticancer Agents 5F 203 and Phortress: Towards Precision Drug Delivery.

Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells (2019)
Journal Article
Quilles Junior, J. C., Bradshaw, T. D., Turyanska, L., Carlos, F. D. R. R., Montanari, A., Leitão, A., …Bradshaw, T. D. (2019). Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells. RSC Advances, 9(63), 36699-36706. https://doi.org/10.1039/c9ra07161j

Cysteine proteases play a key role in tumorigenesis causing protein degradation and promoting invasive tumour growth. Cathepsin L is overexpressed in cancer cells and could provide a specific target for delivery of anticancer agents. We encapsulated... Read More about Apoferritin encapsulation of cysteine protease inhibitors for cathepsin L inhibition in cancer cells.

Immobilized Enzymes on Gold Nanoparticles: From Enhanced Stability to Cleaning of Heritage Textiles (2019)
Journal Article
Gherardi, F., Turyanska, L., Ferrari, E., Weston, N., Fay, M. W., & Colston, B. J. (2019). Immobilized Enzymes on Gold Nanoparticles: From Enhanced Stability to Cleaning of Heritage Textiles. ACS Applied Bio Materials, 2(11), 5136-5143. https://doi.org/10.1021/acsabm.9b00802

Enzyme-based treatments are used in heritage conservation for the effective removal of glues and other damaging organic layers from the surfaces of historic and artistic works. Despite their potential, however, the application of enzymatic treatments... Read More about Immobilized Enzymes on Gold Nanoparticles: From Enhanced Stability to Cleaning of Heritage Textiles.

Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells (2019)
Journal Article
Liu, Z., Turyanska, L., Zamberlan, F., Pacifico, S., Bradshaw, T. D., Moro, F., …Thomas, N. R. (2019). Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells. Nanotechnology, 30(50), Article 505102. https://doi.org/10.1088/1361-6528/ab437c

We report on the synthesis of water-soluble gold nanoclusters capped with polyethylene glycol (PEG)-based ligands and further functionalized with folic acid for specific cellular uptake. The dihydrolipoic acid-PEG-based ligands terminated with -OMe,... Read More about Synthesis of folic acid functionalized gold nanoclusters for targeting folate receptor-positive cells.

Development of novel apoferritin formulations for antitumour benzothiazoles (2019)
Journal Article
Breen, A. F., Wells, G., Turyanska, L., & Bradshaw, T. D. (2019). Development of novel apoferritin formulations for antitumour benzothiazoles. Cancer Reports, 2(4), 1-7. https://doi.org/10.1002/cnr2.1155

Background The benzothiazole structure is important in medicinal chemistry, and 5‐fluoro‐2‐(3,4‐dimethoxyphenyl) benzothiazole (GW 610) is of particular interest as it shows outstanding anticancer activity in sensitive breast and colorectal carcinom... Read More about Development of novel apoferritin formulations for antitumour benzothiazoles.

Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots (2017)
Journal Article
Makarovsky, O., Turyanska, L., Mori, N., Greenaway, M., Eaves, L., Patanè, A., …Yakimova, R. (in press). Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots. 2D Materials, 4(3), https://doi.org/10.1088/2053-1583/aa76bb

We report a simultaneous increase of carrier concentration, mobility and photoresponsivity when SiC-grown graphene is decorated with a surface layer of colloidal PbS quantum dots, which act as electron donors. The charge on the ionised dots is spatia... Read More about Enhancing optoelectronic properties of SiC-grown graphene by a surface layer of colloidal quantum dots.

Mobility enhancement of CVD graphene by spatially correlated charges (2017)
Journal Article
Turyanska, L., Makarovsky, O., Eaves, L., Patanè, A., & Mori, N. (2017). Mobility enhancement of CVD graphene by spatially correlated charges. 2D Materials, 4(2), Article 025026. https://doi.org/10.1088/2053-1583/aa55b4

The manuscript presents a strategy for enhancing the carrier mobility of single layer CVD graphene (CVD SLG) based on spatially correlated charges. Our Monte Carlo simulations, numerical modeling and the experimental results confirm that spatial corr... Read More about Mobility enhancement of CVD graphene by spatially correlated charges.

Developing Mn-doped lead sulfide quantum dots for MRI labels (2016)
Journal Article
Turyanska, L., Moro, F., Patanè, A., Barr, J., Köckenberger, W., Taylor, A., …Thomas, N. R. (2016). Developing Mn-doped lead sulfide quantum dots for MRI labels. Journal of Materials Chemistry B, 4(42), 6797-6802. https://doi.org/10.1039/c6tb02574a

Magnetic interactions of Mn2+ions in lead sulfide (PbS) nanocrystals with protons in water are probed by NMR and MRI. A thin layer of capping molecules enables free solvent diffusion to the nanocrystal surface resulting in a decrease of proton relaxa... Read More about Developing Mn-doped lead sulfide quantum dots for MRI labels.

Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistor (2015)
Journal Article
Turyanska, L., Makarovsky, O., Svatek, S. A., Beton, P. H., Mellor, C. J., Patanè, A., Eaves, L., Thomas, N. R., Fay, M. W., Marsden, A. J., & Wilson, N. R. (2015). Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistor. Advanced Electronic Materials, 1(7), 1500062. https://doi.org/10.1002/aelm.201500062

In graphene devices decorated with a layer of near-infrared colloidal PbS quantum dots (QDs), the choice of the QD capping ligands and the integrity of the QD layer have a strong influence on the doping, carrier mobility, and photoresponse. By using... Read More about Ligand-induced control of photoconductive gain and doping in a hybrid graphene-quantum dot transistor.

Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals (2014)
Journal Article
Turyanska, L., Hill, R. J. A., Makarovsky, O., Moro, F., Knott, A. N., Larkin, O. J., …Curry, R. J. (2014). Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals. Nanoscale, 6(15), 8919-8925. https://doi.org/10.1039/c4nr02336f

We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (... Read More about Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals.

Apoferritin-encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells (2013)
Journal Article
Bradshaw, T. D., Junor, M., Patanè, A., Clarke, P., Thomas, N. R., Li, M., …Turyanska, L. (2013). Apoferritin-encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells. Journal of Materials Chemistry B, 45, 6254-6260. https://doi.org/10.1039/c3tb21197e

Colorectal carcinoma (CRC) is the 3rd most common cancer worldwide, thus development of novel therapeutic strategies is imperative. Herein potent, selective dose-dependent antitumor activity of horse spleen apoferritin encapsulated PbS quantum dots (... Read More about Apoferritin-encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells.

Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals (2013)
Journal Article
Turyanska, L., Moro, F., Knott, A. N., Fay, M. W., Bradshaw, T. D., & Patanè, A. (2013). Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals. Particle and Particle Systems Characterization, 30(11), https://doi.org/10.1002/ppsc.201300184

Mn-doped PbS colloidal nanocrystals in aqueous solution are paramagnetic and optically active in the technologically important biological window between 1.2 and 0.8 μm. Cytoxicity studies show that exposure of human cell lines to the nanoparticles at... Read More about Paramagnetic, near-infrared fluorescent Mn-doped PbS colloidal nanocrystals.

Band-gap profiling by laser writing of hydrogen-containing III-N-Vs (2012)
Journal Article
Balakrishnan, N., Pettinari, G., Makarovsky, O., Turyanska, L., Fay, M. W., De Luca, M., …Patanè, A. (2012). Band-gap profiling by laser writing of hydrogen-containing III-N-Vs. Physical review B: Condensed matter and materials physics, 86(15), Article 155307. https://doi.org/10.1103/PhysRevB.86.155307

We show that the dissociation of the N-H complex in hydrogenated III-N-Vs can be laser activated at temperatures that are significantly smaller than those (>200°C) required for thermal dissociation due to a resonant photon absorption by the N-H compl... Read More about Band-gap profiling by laser writing of hydrogen-containing III-N-Vs.