Skip to main content

Research Repository

Advanced Search

Dr Michael Fay's Outputs (76)

The impact of binders on magnetic framework composite pellets for CO2 capture (2025)
Journal Article
Woodliffe, J. L., Myszczynski, M., Fay, M., Molinar-Díaz, J., Lester, E., & Robertson, K. (2025). The impact of binders on magnetic framework composite pellets for CO2 capture. Chemical Engineering Journal, 510, Article 161641. https://doi.org/10.1016/j.cej.2025.161641

Magnetic framework composites (MFCs), comprising magnetic nanoparticles (MNPs) embedded in metal–organic frameworks (MOFs), have emerged as an exciting novel class of advanced functional materials. MFCs show particular promise for CO2 capture, where... Read More about The impact of binders on magnetic framework composite pellets for CO2 capture.

Molecular orientation and stratification revealed in RNA-lipid nanoparticles using Cryogenic Orbitrap Secondary Ion Mass Spectrometry (Cryo-OrbiSIMS) depth profiling (2025)
Preprint / Working Paper
Kotowska, A., Fay, M., Watts, J., Gilmore, I., Scurr, D., Howe, A., Capka, V., Perez, C., Doud, D., Patel, S., Umbarger, M., Langer, R., & Alexander, M. (2025). Molecular orientation and stratification revealed in RNA-lipid nanoparticles using Cryogenic Orbitrap Secondary Ion Mass Spectrometry (Cryo-OrbiSIMS) depth profiling

Lipid nanoparticle RNA (LNP-RNA) formulations are used for the delivery of vaccines and other therapies. RNA molecules are encapsulated within their interior through electrostatic interactions with positively charged lipids. The identity of the lipid... Read More about Molecular orientation and stratification revealed in RNA-lipid nanoparticles using Cryogenic Orbitrap Secondary Ion Mass Spectrometry (Cryo-OrbiSIMS) depth profiling.

Comparing physical and chemical properties of soot from laboratory tests and heavy-duty engines used in field operations (2024)
Journal Article
Pacino, A., La Rocca, A., Smith, J., Berryman, J., Fowell, M., Cairns, A., & Fay, M. W. (2024). Comparing physical and chemical properties of soot from laboratory tests and heavy-duty engines used in field operations. SAE International Journal of Fuels and Lubricants, 18(1), Article 04-18-01-0002. https://doi.org/10.4271/04-18-01-0002

Morphology, nanostructure, and composition of soot extracted from the oil sump of different heavy-duty engines operated under dynamometer and field conditions were investigated. Soot characteristics were then compared to a carbon black sample. Soot w... Read More about Comparing physical and chemical properties of soot from laboratory tests and heavy-duty engines used in field operations.

Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide (2024)
Journal Article
Cassioli, M. L., Fay, M., Turyanska, L., Bradshaw, T. D., Thomas, N. R., & Pordea, A. (2024). Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide. RSC Advances, 14(20), 14008-14016. https://doi.org/10.1039/d3ra07430g

Protein capsules are promising drug delivery vehicles for cancer research therapies. Apoferritin (AFt) is a self-assembling 12 nm diameter hollow nanocage with many desirable features for drug delivery, however, control of drug retention inside the p... Read More about Encapsulation of copper phenanthroline within horse spleen apoferritin: characterisation, cytotoxic activity and ability to retain temozolomide.

Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol (2024)
Journal Article
LeMercier, T. M., Thangamuthu, M., Kohlrausch, E. C., Chen, Y., Stoppiello, C. T., Fay, M. W., Rance, G. A., Aliev, G. N., Theis, W., Biskupek, J., Kaiser, U., Lanterna, A. E., Alves Fernandes, J., & Khlobystov, A. N. (2024). Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol. Sustainable Energy and Fuels, 1691-1703. https://doi.org/10.1039/D4SE00028E

Carbon nitride (C3N4) possesses both a band gap in the visible range and a low-lying conduction band potential, suitable for water splitting and CO2 reduction reactions (CO2RR). Yet, bulk C3N4 (b-C3N4) suffers from structural disorder leading to slug... Read More about Synergy of nanocrystalline carbon nitride with Cu single atom catalyst leads to selective photocatalytic reduction of CO2 to methanol.

Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds (2024)
Journal Article
Flinn, B. T., Rance, G. A., Cull, W. J., Cardillo-Zallo, I., Pitcairn, J., Cliffe, M. J., Fay, M. W., Tyler, A. J., Weare, B. L., Stoppiello, C. T., Davies, E. S., Mather, M. L., & Khlobystov, A. N. (2024). Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds. ACS Nano, 18(9), 7148–7160. https://doi.org/10.1021/acsnano.3c11820

Room-temperature magnetically switchable materials play a vital role in current and upcoming quantum technologies, such as spintronics, molecular switches, and data storage devices. The increasing miniaturization of device architectures produces a ne... Read More about Sensing the Spin State of Room-Temperature Switchable Cyanometallate Frameworks with Nitrogen-Vacancy Centers in Nanodiamonds.

Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas (2024)
Journal Article
Cardillo-Zallo, I., Biskupek, J., Bloodworth, S., Marsden, E. S., Fay, M. W., Ramasse, Q. M., Rance, G. A., Stoppiello, C. T., Cull, W. J., Weare, B. L., Whitby, R. J., Kaiser, U., Brown, P. D., & Khlobystov, A. N. (2024). Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas. ACS Nano, 18(4), 2958–2971. https://doi.org/10.1021/acsnano.3c07853

Single-atom dynamics of noble-gas elements have been investigated using time-resolved transmission electron microscopy (TEM), with direct observation providing for a deeper understanding of chemical bonding, reactivity, and states of matter at the na... Read More about Atomic-Scale Time-Resolved Imaging of Krypton Dimers, Chains and Transition to a One-Dimensional Gas.

Rapid microwave synthesis of sustainable magnetic framework composites of UTSA-16(Zn) with Fe3O4 nanoparticles for efficient CO2 capture (2023)
Journal Article
Woodliffe, J. L., Johnston, A.-L., Fay, M., Ferrari, R., Gomes, R. L., Lester, E., Ahmed, I., & Laybourn, A. (2023). Rapid microwave synthesis of sustainable magnetic framework composites of UTSA-16(Zn) with Fe3O4 nanoparticles for efficient CO2 capture. Materials Advances, 4(11), 5838-5849. https://doi.org/10.1039/D3MA00351E

Metal-organic frameworks (MOFs) have shown excellent potential for carbon dioxide capture applications due to their high sorption capacities and selectivities. However, MOFs are typically thermally insulating, and so thermal CO2 regeneration is chall... Read More about Rapid microwave synthesis of sustainable magnetic framework composites of UTSA-16(Zn) with Fe3O4 nanoparticles for efficient CO2 capture.

Investigation of Exhaust Particles on Different TEM Grids: a Comparison between Graphene Oxide and Silicon Nitride Grids (2023)
Presentation / Conference Contribution
Lagana, S., Akifjevs, R., Rocca, A. L., Cairns, A., Fay, M. W., & Webb, K. F. (2023, August). Investigation of Exhaust Particles on Different TEM Grids: a Comparison between Graphene Oxide and Silicon Nitride Grids. Presented at 2023 JSAE/SAE Powertrains, Energy and Lubricants International Meeting, Kyoto, Japan

Two different TEM (Transmission Electron Microscopy) grids - graphene oxide (GO) and silicon nitride (SiN) - were used to capture the particulates emitted with the exhaust of a modern 1.0 L GDI (Gasoline Direct Injection) engine. One speed-load condi... Read More about Investigation of Exhaust Particles on Different TEM Grids: a Comparison between Graphene Oxide and Silicon Nitride Grids.

Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid (2023)
Journal Article
Flinn, B. T., Radu, V., Fay, M. W., Tyler, A. J., Pitcairn, J., Cliffe, M. J., Weare, B. L., Stoppiello, C. T., Mather, M. L., & Khlobystov, A. N. (2023). Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid. Nanoscale Advances, 2023(23), 6423-6434. https://doi.org/10.1039/d3na00155e

Spin-active nanomaterials play a vital role in current and upcoming quantum technologies, such as spintronics, data storage and computing. To advance the design and application of these materials, methods to link size, shape, structure, and chemical... Read More about Nitrogen vacancy defects in single-particle nanodiamonds sense paramagnetic transition metal spin noise from nanoparticles on a transmission electron microscopy grid.

Evaluation of cell disruption technologies on magnetosome chain length and aggregation behaviour from Magnetospirillum gryphiswaldense MSR-1 (2023)
Journal Article
Masó-Martínez, M., Fryer, B., Aubert, D., Peacock, B., Lees, R., Rance, G. A., Fay, M. W., Topham, P. D., & Fernández-Castané, A. (2023). Evaluation of cell disruption technologies on magnetosome chain length and aggregation behaviour from Magnetospirillum gryphiswaldense MSR-1. Frontiers in Bioengineering and Biotechnology, 11, Article 1172457. https://doi.org/10.3389/fbioe.2023.1172457

Magnetosomes are biologically-derived magnetic nanoparticles (MNPs) naturally produced by magnetotactic bacteria (MTB). Due to their distinctive characteristics, such as narrow size distribution and high biocompatibility, magnetosomes represent an at... Read More about Evaluation of cell disruption technologies on magnetosome chain length and aggregation behaviour from Magnetospirillum gryphiswaldense MSR-1.

2D and 3D TEM Characterisation of Benzene and Ethylene Soot (2023)
Journal Article
Lagana, S., La Rocca, A., Cairns, A., Fay, M. W., Apicella, B., Ciajolo, A., & Russo, C. (in press). 2D and 3D TEM Characterisation of Benzene and Ethylene Soot. Fuels, 4(2), 174-185. https://doi.org/10.3390/fuels4020011

Flame-generated soot particles from two different fuels, benzene (B) and ethylene (E), at different ageing conditions, were analysed to assess their morphological and structural features. Samples were collected at 6, 10 and 14 mm from the nozzle loca... Read More about 2D and 3D TEM Characterisation of Benzene and Ethylene Soot.

Redshift and amplitude increase in the dielectric function of corundum-like α-(TixGa1−x)2O3 (2023)
Journal Article
Kluth, E., Fay, M., Parmenter, C., Roberts, J., Smith, E., Stoppiello, C., Massabuau, F., Goldhahn, R., & Feneberg, M. (2023). Redshift and amplitude increase in the dielectric function of corundum-like α-(TixGa1−x)2O3. Applied Physics Letters, 122(9), Article 092101. https://doi.org/10.1063/5.0139725

Redshift of the absorption onset and amplitude increase in the ultraviolet complex dielectric function (DF) of corundum-like α-(TixGa1-x)2O3 with increasing Ti content is presented. α-Ga2O3 thin film samples alloyed with Ti up to x = 0.61 are grown f... Read More about Redshift and amplitude increase in the dielectric function of corundum-like α-(TixGa1−x)2O3.

Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing (2023)
Journal Article
Im, J., Liu, Y., Hu, Q., Trindade, G. F., Parmenter, C., Fay, M., He, Y., Irvine, D. J., Tuck, C., Wildman, R. D., Hague, R., & Turyanska, L. (2023). Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing. Advanced Functional Materials, 33(39), Article 2211920. https://doi.org/10.1002/adfm.202211920

This study reports the successful fabrication of complex 3D metal nanoparticle–polymer nanocomposites using two-photon polymerization (2PP). Three complementary strategies are detailed: in situ formation of metal nanoparticles (MeNPs) through a singl... Read More about Strategies for Integrating Metal Nanoparticles with Two-Photon Polymerization Process: Toward High Resolution Functional Additive Manufacturing.

Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope (2022)
Journal Article
Fung, K. L., Weare, B. L., Fay, M. W., Argent, S. P., & Khlobystov, A. N. (2023). Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope. Micron, 165, Article 103395. https://doi.org/10.1016/j.micron.2022.103395

Reactivity of a series of related molecules under the 80 keV electron beam have been investigated and correlated with their structures and chemical composition. Hydrogenated and halogenated derivatives of hexaazatrinaphthylene, coronene, and phthaloc... Read More about Reactions of polyaromatic molecules in crystals under electron beam of the transmission electron microscope.

Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response (2022)
Journal Article
Wadge, M. D., Bird, M. A., Sankowski, A., Constantin, H., Fay, M. W., Cooper, T. P., O'Shea, J. N., Khlobystov, A. N., Walsh, D. A., Johnson, L. R., Felfel, R. M., Ahmed, I., & Grant, D. M. (2023). Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response. Advanced Materials Interfaces, 10(5), Article 2201523. https://doi.org/10.1002/admi.202201523

This study describes the chemical conversion and heat treatment of Ti6Al4V microspheres (Ti6_MS), and the resulting effects on their electrocatalytic properties. The wet-chemical conversion (5.0m NaOH, 60°C, 24h; Sample label: Ti6_TC) converts the to... Read More about Nanostructured, Alkaline Titanate‐Converted, and Heat‐Treated Ti6Al4V Microspheres via Wet‐Chemical Alkaline Modification and their ORR Electrocatalytic Response.

Catalysis enabled synthesis, structures, and reactivities of fluorinated S8-corona[n]arenes (n = 8–12) (2022)
Journal Article
Turley, A. T., Hanson-Heine, M. W. D., Argent, S. P., Hu, Y., Jones, T. A., Fay, M., & Woodward, S. (2023). Catalysis enabled synthesis, structures, and reactivities of fluorinated S8-corona[n]arenes (n = 8–12). Chemical Science, 14(1), 70-77. https://doi.org/10.1039/d2sc05348a

Previously inaccessible large S8-corona[n]arene macrocycles (n = 8-12) with alternating aryl and 1,4-C6F4 subunits are easily prepared on up to gram scales, without the need for chromatography (up to 45% yield, 10 different examples) through new high... Read More about Catalysis enabled synthesis, structures, and reactivities of fluorinated S8-corona[n]arenes (n = 8–12).

Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties (2022)
Journal Article
Hu, C., Zhang, H., Neate, N., Fay, M., Hou, X., Grant, D., & Xu, F. (2022). Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties. Polymers, 14(13), Article 2583. https://doi.org/10.3390/polym14132583

In this study, graphene oxide–carbon nanotubes nanostructures decorated with nickel nanoparticles (NiGNT) were prepared through the molecular-level-mixing method, followed by a reduction process, and then applied as reinforcements to enhance the epox... Read More about Highly Aligned Ni-Decorated GO–CNT Nanostructures in Epoxy with Enhanced Thermal and Electrical Properties.

Linking operating conditions of a GDI engine to the nature and nanostructure of ultrafine soot particles (2022)
Journal Article
Pfau, S. A., Rocca, A. L., Haffner-Staton, E., Fay, M. W., & Cairns, A. (2022). Linking operating conditions of a GDI engine to the nature and nanostructure of ultrafine soot particles. Combustion and Flame, 245, 112315. https://doi.org/10.1016/j.combustflame.2022.112315

Sub-23 nm particulate emissions from internal combustion engines have become a topic of interest for research and legislative regulations in recent years. Many studies focused on electrical mobility measurements of soot particles, but few works emplo... Read More about Linking operating conditions of a GDI engine to the nature and nanostructure of ultrafine soot particles.

Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites (2021)
Journal Article
Hu, C., Liu, T., Neate, N., Fay, M., Hou, X., Grant, D., & Xu, F. (2022). Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites. Composites Science and Technology, 218, Article 109201. https://doi.org/10.1016/j.compscitech.2021.109201

A nanostructure of graphene oxide (GO) and carbon nanotubes (CNTs) decorated with silver nanoparticles (AgGNT) has been prepared via a molecular-level-mixing (MLM) method followed by a subsequent freeze-drying and reduction process. The obtained well... Read More about Enhanced thermal and electrical properties by Ag nanoparticles decorated GO-CNT nanostructures in PEEK composites.