Skip to main content

Research Repository

Advanced Search

Professor PAUL BROWN's Outputs (3)

Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of Fe3O4-Based Porous and Dense Microspheres (2023)
Journal Article
Molinar-Díaz, J., Woodliffe, J. L., Steer, E., Morley, N. A., Brown, P. D., & Ahmed, I. (2023). Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of Fe3O4-Based Porous and Dense Microspheres. Molecules, 28(6), Article 2523. https://doi.org/10.3390/molecules28062523

The rapid, single-stage, flame-spheroidisation process, as applied to varying Fe3O4:CaCO3 powder combinations, provides for the rapid production of a mixture of dense and porous ferromagnetic microspheres with homogeneous composition, high levels of... Read More about Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of Fe3O4-Based Porous and Dense Microspheres.

Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of Fe3O4-Based Porous and Dense Microspheres (2023)
Journal Article
Molinar-Díaz, J., Woodliffe, J. L., Steer, E., Morley, N. A., Brown, P. D., & Ahmed, I. (in press). Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of Fe3O4-Based Porous and Dense Microspheres. Molecules, 28(6), Article 2523. https://doi.org/10.3390/+molecules28062523

The rapid, single-stage, flame-spheroidisation process, as applied to varying Fe3O4:CaCO3 powder combinations, provides for the rapid production of a mixture of dense and porous ferro-magnetic microspheres with homogeneous composition, high levels of... Read More about Optimisation of the Flame Spheroidisation Process for the Rapid Manufacture of Fe3O4-Based Porous and Dense Microspheres.

Ferromagnetic Cytocompatible Glass-Ceramic Porous Microspheres for Magnetic Hyperthermia Applications (2023)
Journal Article
Molinar‐Díaz, J., Woodliffe, J. L., Milborne, B., Murrell, L., Islam, M. T., Steer, E., Weston, N., Morley, N. A., Brown, P. D., & Ahmed, I. (2023). Ferromagnetic Cytocompatible Glass-Ceramic Porous Microspheres for Magnetic Hyperthermia Applications. Advanced Materials Interfaces, 10(11), Article 2202089. https://doi.org/10.1002/admi.202202089

Highly porous, ferromagnetic glass-ceramic P40-Fe3O4 microspheres (125–212 µm) with enhanced cytocompatibility have been manufactured for the first time via a facile, rapid, single-stage flame spheroidization process. Dispersions of Fe3O4 and Ca2Fe2O... Read More about Ferromagnetic Cytocompatible Glass-Ceramic Porous Microspheres for Magnetic Hyperthermia Applications.