Skip to main content

Research Repository

Advanced Search

All Outputs (3)

Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands (2024)
Journal Article
Prasad, R. R. R., Boyadjieva, S. S., Zhou, G., Tan, J., Firth, F. C. N., Ling, S., …Forgan, R. S. (2024). Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands. ACS Applied Materials and Interfaces, 16(14), 17812–17820. https://doi.org/10.1021/acsami.4c00604

Two-dimensional metal–organic nanosheets (MONs) have emerged as attractive alternatives to their three-dimensional metal–organic framework (MOF) counterparts for heterogeneous catalysis due to their greater external surface areas and higher accessibi... Read More about Modulated Self-Assembly of Catalytically Active Metal–Organic Nanosheets Containing Zr6 Clusters and Dicarboxylate Ligands.

Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data (2024)
Journal Article
Witman, M. D., Bartelt, N. C., Ling, S., Guan, P., Way, L., Allendorf, M. D., & Stavila, V. (2024). Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data. Journal of Physical Chemistry Letters, 15(5), 1500-1506. https://doi.org/10.1021/acs.jpclett.3c03369

Efficient prediction of sampling-intensive thermodynamic properties is needed to evaluate material performance and permit high-throughput materials modeling for a diverse array of technology applications. To alleviate the prohibitive computational ex... Read More about Phase Diagrams of Alloys and Their Hydrides via On-Lattice Graph Neural Networks and Limited Training Data.

A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells (2024)
Journal Article
Zou, P., Iuga, D., Ling, S., Brown, A. J., Chen, S., Zhang, M., …Tao, S. (2024). A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells. Nature Communications, 15(1), Article 909. https://doi.org/10.1038/s41467-024-45060-1

Low temperature ionic conducting materials such as OH− and H+ ionic conductors are important electrolytes for electrochemical devices. Here we show the discovery of mixed OH−/H+ conduction in ceramic materials. SrZr0.8Y0.2O3-δ exhibits a high ionic c... Read More about A fast ceramic mixed OH−/H+ ionic conductor for low temperature fuel cells.