Skip to main content

Research Repository

Advanced Search

All Outputs (5)

Local cryptic diversity in salinity adaptation mechanisms in the wild outcrossing Brassica fruticulosa (2024)
Journal Article
Busoms, S., da Silva, A. C., Escolà, G., Abdilzadeh, R., Curran, E., Bollmann-Giolai, A., Bray, S., Wilson, M., Poschenrieder, C., & Yant, L. (2024). Local cryptic diversity in salinity adaptation mechanisms in the wild outcrossing Brassica fruticulosa. Proceedings of the National Academy of Sciences, 121(40), Article e2407821121. https://doi.org/10.1073/pnas.2407821121

It is normally supposed that populations of the same species should evolve shared mechanisms of adaptation to common stressors due to evolutionary constraint. Here, we describe a system of within-species local adaptation to coastal habitats, Brassica... Read More about Local cryptic diversity in salinity adaptation mechanisms in the wild outcrossing Brassica fruticulosa.

Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat (2022)
Journal Article
GRIFFITHS, M., ATKINSON, J. A., Gardiner, L. J., SWARUP, R., POUND, M. P., WILSON, M. H., BENNETT, M. J., & WELLS, D. M. (2022). Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat. Journal of Integrative Agriculture, 21(4), 917-932. https://doi.org/10.1016/s2095-3119%2821%2963700-0

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.... Read More about Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat.

Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat (2019)
Other
Griffiths, M., Atkinson, J. A., Gardiner, L.-J., Swarup, R., Pound, M. P., Wilson, M. H., Bennett, M. J., & Wells, D. M. (2019). Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat

The root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource dependent response in wheat (Triticum aestivum L.... Read More about Identification of nitrogen-dependent QTL and underlying genes for root system architecture in hexaploid wheat.

Deep machine learning provides state-of-the-art performance in image-based plant phenotyping (2017)
Journal Article
Pound, M. P., Atkinson, J. A., Townsend, A. J., Wilson, M. H., Griffiths, M., Jackson, A. S., Bulat, A., Tzimiropoulos, G., Wells, D. M., Murchie, E. H., Pridmore, T. P., & French, A. P. (2017). Deep machine learning provides state-of-the-art performance in image-based plant phenotyping. GigaScience, 6(10), Article gix083. https://doi.org/10.1093/gigascience/gix083

© The Author 2017. In plant phenotyping, it has become important to be able to measure many features on large image sets in order to aid genetic discovery. The size of the datasets, now often captured robotically, often precludes manual inspection, h... Read More about Deep machine learning provides state-of-the-art performance in image-based plant phenotyping.

Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping (2016)
Preprint / Working Paper
Pound, M. P., Burgess, A. J., Wilson, M. H., Atkinson, J. A., Griffiths, M., Jackson, A. S., Bulat, A., Tzimiropoulos, G., Wells, D. M., Murchie, E. H., Pridmore, T. P., & French, A. P. Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping

Deep learning is an emerging field that promises unparalleled results on many data analysis problems. We show the success offered by such techniques when applied to the challenging problem of image-based plant phenotyping, and demonstrate state-of-th... Read More about Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping.