Skip to main content

Research Repository

Advanced Search

All Outputs (41)

Reinforcement learning when your life depends on it: a neuro-economic theory of learning (2024)
Preprint / Working Paper
Jiang, J., Foyard, E., & van Rossum, M. C. Reinforcement learning when your life depends on it: a neuro-economic theory of learning

Synaptic plasticity enables animals to adapt to their environment, but memory formation can consume a substantial amount of metabolic energy, potentially impairing survival. Hence, a neuro-economic dilemma arises whether learning is a profitable inve... Read More about Reinforcement learning when your life depends on it: a neuro-economic theory of learning.

Energetically efficient learning in neuronal networks (2023)
Journal Article
Pache, A., & van Rossum, M. C. (2023). Energetically efficient learning in neuronal networks. Current Opinion in Neurobiology, 83, Article 102779. https://doi.org/10.1016/j.conb.2023.102779

Human and animal experiments have shown that acquiring and storing information can require substantial amounts of metabolic energy. However, computational models of neural plasticity only seldom take this cost into account, and might thereby miss an... Read More about Energetically efficient learning in neuronal networks.

Competitive plasticity to reduce the energetic costs of learning (2023)
Preprint / Working Paper
van Rossum, M. C. Competitive plasticity to reduce the energetic costs of learning

The brain is not only constrained by energy needed to fuel computation, but it is also constrained by energy needed to form memories. Experiments have shown that learning simple conditioning tasks already carries a significant metabolic cost. Yet, le... Read More about Competitive plasticity to reduce the energetic costs of learning.

Lazy learning: a biologically-inspired plasticity rule for fast and energy efficient synaptic plasticity (2023)
Preprint / Working Paper
Pache, A., & Van Rossum, M. Lazy learning: a biologically-inspired plasticity rule for fast and energy efficient synaptic plasticity

When training neural networks for classification tasks with backpropagation, parameters are updated on every trial, even if the sample is classified correctly. In contrast, humans concentrate their learning effort on errors. Inspired by human learnin... Read More about Lazy learning: a biologically-inspired plasticity rule for fast and energy efficient synaptic plasticity.

Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep (2023)
Journal Article
Pereira, S. I. R., Santamaria, L., Andrews, R., Schmidt, E., Van Rossum, M. C., & Lewis, P. (2023). Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep. Journal of Neuroscience, 43(21), 3838-3848. https://doi.org/10.1523/jneurosci.1966-21.2022

Sleep facilitates abstraction, but the exact mechanisms underpinning this are unknown. Here, we aimed to determine whether triggering reactivation in sleep could facilitate this process. We paired abstraction problems with sounds, then replayed these... Read More about Rule Abstraction Is Facilitated by Auditory Cuing in REM Sleep.

Estimating the energy requirements for long term memory formation (2023)
Preprint / Working Paper
Girard, M., Jiang, J., & van Rossum, M. C. Estimating the energy requirements for long term memory formation

Brains consume metabolic energy to process information, but also to store memories. The energy required for memory formation can be substantial, for instance in fruit flies memory formation leads to a shorter lifespan upon subsequent starvation (Mery... Read More about Estimating the energy requirements for long term memory formation.

Weight dependence in BCM leads to adjustable synaptic competition (2022)
Journal Article
Albesa-González, A., Froc, M., Williamson, O., & van Rossum, M. C. (2022). Weight dependence in BCM leads to adjustable synaptic competition. Journal of Computational Neuroscience, 50(4), 431-444. https://doi.org/10.1007/s10827-022-00824-w

Models of synaptic plasticity have been used to better understand neural development as well as learning and memory. One prominent classic model is the Bienenstock-Cooper-Munro (BCM) model that has been particularly successful in explaining plasticit... Read More about Weight dependence in BCM leads to adjustable synaptic competition.

Electro-physiology Models of Cells with Spherical Geometry with Non-conducting Center (2020)
Journal Article
Jiang, J., Smith, P., & van Rossum, M. C. W. (2020). Electro-physiology Models of Cells with Spherical Geometry with Non-conducting Center. Bulletin of Mathematical Biology, 82(12), Article 147. https://doi.org/10.1007/s11538-020-00828-6

We study the flow of electrical currents in spherical cells with a non-conducting core, so that current flow is restricted to a thin shell below the cell’s membrane. Examples of such cells are fat storing cells (adipocytes). We derive the relation be... Read More about Electro-physiology Models of Cells with Spherical Geometry with Non-conducting Center.

Energy efficient synaptic plasticity (2020)
Journal Article
Li, H. L., & van Rossum, M. C. (2020). Energy efficient synaptic plasticity. eLife, 9, Article e50804. https://doi.org/10.7554/elife.50804

Many aspects of the brain's design can be understood as the result of evolutionary drive towards metabolic efficiency. In addition to the energetic costs of neural computation and transmission, experimental evidence indicates that synaptic plasticity... Read More about Energy efficient synaptic plasticity.

Self-organised reactivation maintains and reinforces memories despite synaptic turnover (2019)
Journal Article
Fauth, M. J., & van Rossum, M. C. (2019). Self-organised reactivation maintains and reinforces memories despite synaptic turnover. eLife, 2019(8), Article e43717. https://doi.org/10.7554/eLife.43717

Long-term memories are believed to be stored in the synapses of cortical neuronal networks. However, recent experiments report continuous creation and removal of cortical synapses, which raises the question how memories can survive on such a variable... Read More about Self-organised reactivation maintains and reinforces memories despite synaptic turnover.

Slowdown of BCM plasticity with many synapses (2019)
Journal Article
Froc, M., & van Rossum, M. C. W. (2019). Slowdown of BCM plasticity with many synapses. Journal of Computational Neuroscience, 46(2), 141-144. https://doi.org/10.1007/s10827-019-00715-7

During neural development sensory stimulation induces long-term changes in the receptive field of the neurons that encode the stimuli. The Bienenstock-Cooper-Munro (BCM) model was introduced to model and analyze this process computationally, and it r... Read More about Slowdown of BCM plasticity with many synapses.

Spatial attention affects the early processing of neutral versus fearful faces when they are task-irrelevant: a classifier study of the EEG C1 component (2018)
Journal Article
Acunzo, D., MacKenzie, G., & Van Rossum, M. (2019). Spatial attention affects the early processing of neutral versus fearful faces when they are task-irrelevant: a classifier study of the EEG C1 component. Cognitive, Affective, and Behavioral Neuroscience, 19(1), 123–137. https://doi.org/10.3758/s13415-018-00650-7

EEG studies suggest that the emotional content of visual stimuli is processed rapidly. In particular, the C1 component, which occurs up to 100 ms after stimulus onset and likely reflects activity in primary visual cortex V1, has been reported to be s... Read More about Spatial attention affects the early processing of neutral versus fearful faces when they are task-irrelevant: a classifier study of the EEG C1 component.

Unconscious biases in neural populations coding multiple stimuli (2018)
Journal Article
Keemink, S. W., Tailor, D. V., & van Rossum, M. C. (2018). Unconscious biases in neural populations coding multiple stimuli. Neural Computation, 30(12), 3168–3188. https://doi.org/10.1162/neco_a_01130

Throughout the nervous system information is commonly coded in activity distributed over populations of neurons. In idealized situations where a single, continuous stimulus is encoded in a homogeneous population code, the value of the encoded stimulu... Read More about Unconscious biases in neural populations coding multiple stimuli.

Effects of V1 surround modulation tuning on visual saliency and the tilt illusion (2018)
Journal Article
Keemink, S. W., Boucsein, C., & van Rossum, M. C. (2018). Effects of V1 surround modulation tuning on visual saliency and the tilt illusion. Journal of Neurophysiology, 120(3), 942-952. https://doi.org/10.1152/jn.00864.2017

© 2018 American Physiological Society. All rights reserved. Neurons in the primary visual cortex respond to oriented stimuli placed in the center of their receptive field, yet their response is modulated by stimuli outside the receptive field (the su... Read More about Effects of V1 surround modulation tuning on visual saliency and the tilt illusion.

FISSA: a neuropil decontamination toolbox for calcium imaging signals (2018)
Journal Article
Keemink, S. W., Lowe, S. C., Pakan, J. M., Dylda, E., van Rossum, M. C., & Rochefort, N. L. (in press). FISSA: a neuropil decontamination toolbox for calcium imaging signals. Scientific Reports, 8, Article 3493. https://doi.org/10.1038/s41598-018-21640-2

In vivo calcium imaging has become a method of choice to image neuronal population activity throughout the nervous system. These experiments generate large sequences of images. Their analysis is computationally intensive and typically involves motion... Read More about FISSA: a neuropil decontamination toolbox for calcium imaging signals.

Extraction of synaptic input properties in vivo (2017)
Journal Article
Puggioni, P., Jelitai, M., Duguid, I., & van Rossum, M. C. (2017). Extraction of synaptic input properties in vivo. Neural Computation, 29(7), https://doi.org/10.1162/NECO_a_00975

Knowledge of synaptic input is crucial for understanding synaptic integration and ultimately neural function. However, in vivo, the rates at which synaptic inputs arrive are high, so that it is typically impossible to detect single events. We show he... Read More about Extraction of synaptic input properties in vivo.

Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions (2017)
Journal Article
Keck, T., Toyoizumi, T., Chen, L., Doiron, B., Feldman, D. E., Fox, K., Gerstner, W., Haydon, P. G., Hübener, M., Lee, H.-K., Lisman, J. E., Rose, T., Sengpiel, F., Stellwagen, D., Stryker, M. P., Turrigiano, G. G., & van Rossum, M. C. (2017). Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions. Philosophical Transactions B: Biological Sciences, 372(1715), https://doi.org/10.1098/rstb.2016.0158

We summarize here the results presented and subsequent discussion from the meeting on Integrating Hebbian and Homeostatic Plasticity at the Royal Society in April 2016. We first outline the major themes and results presented at the meeting. We next p... Read More about Integrating Hebbian and homeostatic plasticity: the current state of the field and future research directions.