Skip to main content

Research Repository

Advanced Search

All Outputs (4)

Disassembly of self-assembling peptide hydrogels as a versatile method for cell extraction and manipulation (2024)
Journal Article
Ligorio, C., Martinez-Espuga, M., Laurenza, D., Hartley, A., Rodgers, C. B., Kotowska, A. M., Scurr, D. J., Dalby, M. J., Ordóñez-Morán, P., & Mata, A. (2024). Disassembly of self-assembling peptide hydrogels as a versatile method for cell extraction and manipulation. Journal of Materials Chemistry B, https://doi.org/10.1039/D4TB01575D

Self-assembling peptide hydrogels (SAPHs) are increasingly being used as two-dimensional (2D) cell culture substrates and three-dimensional (3D) matrices due to their tunable properties and biomimicry of native tissues. Despite these advantages, SAPH... Read More about Disassembly of self-assembling peptide hydrogels as a versatile method for cell extraction and manipulation.

Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine (2024)
Journal Article
Bayraktutan, H., Symonds, P., Brentville, V. A., Moloney, C., Galley, C., Bennett, C. L., Mata, A., Durrant, L., Alexander, C., & Gurnani, P. (2024). Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine. Biomaterials, 311, Article 122647. https://doi.org/10.1016/j.biomaterials.2024.122647

DNA technology has emerged as a promising route to accelerated manufacture of sequence agnostic vaccines. For activity, DNA vaccines must be protected and delivered to the correct antigen presenting cells. However, the physicochemical properties of t... Read More about Sparsely PEGylated poly(beta-amino ester) polyplexes enhance antigen specific T-cell response of a bivalent SARS-CoV-2 DNA vaccine.

084 Cosmetic peptide penetration and assembly in human skin: A label-free approach (2024)
Presentation / Conference Contribution
Ligorio, C., Kotowska, A., Scurr, D., Tavasoli, E., Karaman-Jurukovska, N., Mata, A., Moogan, L., German, G., Lu, F., & Mammone, T. (2024, May). 084 Cosmetic peptide penetration and assembly in human skin: A label-free approach. Presented at Society for Investigative Dermatology (SID) 2024 Meeting, Dallas, TX

A self‐assembled 3D model demonstrates how stiffness educates tumor cell phenotypes and therapy resistance in pancreatic cancer (2024)
Journal Article
Liu, Y., Okesola, B. O., de la Peña, D. O., Li, W., Lin, M., Trabulo, S. M. D., Tatari, M., Lawlor, R. T., Scarpa, A., Wang, W., Knight, M., Loessner, D., Heeschen, C., Mata, A., & Pearce, O. M. (in press). A self‐assembled 3D model demonstrates how stiffness educates tumor cell phenotypes and therapy resistance in pancreatic cancer. Advanced Healthcare Materials, Article 2301941. https://doi.org/10.1002/adhm.202301941

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense and stiff extracellular matrix (ECM) associated with tumor progression and therapy resistance. To further the understanding of how stiffening of the tumor microenvironment (TME) cont... Read More about A self‐assembled 3D model demonstrates how stiffness educates tumor cell phenotypes and therapy resistance in pancreatic cancer.