Skip to main content

Research Repository

Advanced Search

All Outputs (6)

A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin (2022)
Journal Article
Belsham, H. R., Alghamdi, H. M., Dave, N., Rathbone, A. J., Wickstead, B., & Friel, C. T. (2022). A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin. Open Biology, 12(8), Article 220133. https://doi.org/10.1098/rsob.220133

The activity of a kinesin is largely determined by the approximately 350 residue motor domain, and this region alone is sufficient to classify a kinesin as a member of a particular family. The kinesin-13 family are a group of microtubule depolymerizi... Read More about A synthetic ancestral kinesin-13 depolymerizes microtubules faster than any natural depolymerizing kinesin.

Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves (2021)
Journal Article
Mesquita-Ribeiro, R., Fort, R. S., Rathbone, A., Farias, J., Lucci, C., James, V., …Dajas-Bailador, F. (2021). Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves. RNA Biology, 18(sup2), 832-855. https://doi.org/10.1080/15476286.2021.2000792

Neurons have highlighted the needs for decentralized gene expression and specific RNA function in somato-dendritic and axonal compartments, as well as in intercellular communication via extracellular vesicles (EVs). Despite advances in miRNA biology,... Read More about Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves.

Efa6 protects axons and regulates their growth and branching by inhibiting microtubule polymerisation at the cortex (2019)
Journal Article
Qu, Y., Hahn, I., Lees, M., Parkin, J., Voelzmann, A., Dorey, K., …Prokop, A. (2019). Efa6 protects axons and regulates their growth and branching by inhibiting microtubule polymerisation at the cortex. eLife, 8, Article e50319. https://doi.org/10.7554/elife.50319

© 2019, Qu et al. Cortical collapse factors affect microtubule (MT) dynamics at the plasma membrane. They play important roles in neurons, as suggested by inhibition of axon growth and regeneration through the ARF activator Efa6 in C. elegans, and by... Read More about Efa6 protects axons and regulates their growth and branching by inhibiting microtubule polymerisation at the cortex.

Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety (2015)
Journal Article
Pan-Vazquez, A., Rye, N., Ameri, M., McSparron, B., Smallwood, G., Bickerdyke, J., …Toledo-Rodriguez, M. (2015). Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety. Molecular Brain, 8(1), https://doi.org/10.1186/s13041-015-0128-8

Background: Lack of physical activity and increased levels of stress contribute to the development of multiple physical and mental disorders. An increasing number of studies relate voluntary exercise with greater resilience to psychological stress, a... Read More about Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety.