Judith M. Garforth
Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils
Garforth, Judith M.; Bailey, Elizabeth H.; Tye, Andrew M.; Young, Scott D.; Lofts, Stephen
Authors
Professor LIZ BAILEY LIZ.BAILEY@NOTTINGHAM.AC.UK
PROFESSOR OF ENVIRONMENTAL GEOCHEMISTRY
Andrew M. Tye
Scott D. Young
Stephen Lofts
Abstract
Chemical extractants used to measure labile soil metal must ideally select for and solubilise the labile fraction, with minimal solubilisation of non-labile metal. We assessed four extractants (0.43 M HNO3, 0.43 M CH3COOH, 0.05 M Na2H2EDTA and 1 M CaCl2) against these requirements. For soils contaminated by contrasting sources, we compared isotopically exchangeable Ni, Cu, Zn, Cd and Pb (EValue, mg kg-1), with the concentrations of metal solubilised by the chemical extractants (MExt, mg kg-1). Crucially, we also determined isotopically exchangeable metal in the soil–extractant systems (EExt, mg kg-1). Thus ‘EExt - EValue’ quantifies the concentration of mobilised non-labile metal, while ‘EExt - MExt’ represents adsorbed labile metal in the presence of the extractant. Extraction with CaCl2 consistently underestimated EValue for Ni, Cu, Zn and Pb, while providing a reasonable estimate of EValue for Cd. In contrast, extraction with HNO3 both consistently mobilised non-labile metal and overestimated the EValue. Extraction with CH3COOH appeared to provide a good estimate of EValue for Cd; however, this was the net outcome of incomplete solubilisation of labile metal, and concurrent mobilisation of non-labile metal by the extractant (MExt < EExt > EValue). The Na2H2EDTA extractant mobilised some non-labile metal in three of the four soils, but consistently solubilised the entire labile fraction for all soil-metal combinations (MExt ≈ EExt). Comparison of EValue, MExt and EExt provides a rigorous means of assessing the underlying action of soil chemical extraction methods and could be used to refine long-standing soil extraction methodologies.
Citation
Garforth, J. M., Bailey, E. H., Tye, A. M., Young, S. D., & Lofts, S. (2016). Using isotopic dilution to assess chemical extraction of labile Ni, Cu, Zn, Cd and Pb in soils. Chemosphere, 155, https://doi.org/10.1016/j.chemosphere.2016.04.096
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 24, 2016 |
Online Publication Date | May 3, 2016 |
Publication Date | Jul 1, 2016 |
Deposit Date | Jul 20, 2016 |
Publicly Available Date | Jul 20, 2016 |
Journal | Chemosphere |
Print ISSN | 0045-6535 |
Electronic ISSN | 1879-1298 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 155 |
DOI | https://doi.org/10.1016/j.chemosphere.2016.04.096 |
Public URL | https://nottingham-repository.worktribe.com/output/975918 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0045653516305860 |
Contract Date | Jul 20, 2016 |
Files
Garforth Text FINAL after review compiled version.pdf
(546 Kb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc-nd/4.0
You might also like
Differences in the nutritional quality of improved finger millet genotypes in Ethiopia
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search