Skip to main content

Research Repository

Advanced Search

Outputs (18)

Heavy carrier effective masses in van der Waals semiconductor Sn(SeS) revealed by high magnetic fields up to 150 T (2021)
Journal Article
Yang, Z., Wang, X., Felton, J., Kudrynskyi, Z., Gen, M., Nomura, T., Wang, X., Eaves, L., Kovalyuk, Z. D., Kohama, Y., Zhang, L., & Patanè, A. (2021). Heavy carrier effective masses in van der Waals semiconductor Sn(SeS) revealed by high magnetic fields up to 150 T. Physical Review B (Condensed Matter), 104(8), Article 085206. https://doi.org/10.1103/PhysRevB.104.085206

The SnSe2(1-x)S2x alloy is a van der Waals semiconductor with versatile, tunable electronic properties and prospects for future applications ranging from electronics to thermoelectrics and superconductivity. Its band structure and carrier effective m... Read More about Heavy carrier effective masses in van der Waals semiconductor Sn(SeS) revealed by high magnetic fields up to 150 T.

Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals (2021)
Journal Article
Cottam, N. D., Zhang, C., Wildman, J. L., Patanè, A., Turyanska, L., & Makarovsky, O. (2021). Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals. Advanced Optical Materials, 9(13), Article 2100104. https://doi.org/10.1002/adom.202100104

Inorganic perovskite nanocrystals (NCs) have demonstrated a number of unique optical and electronic properties for optoelectronic applications. However, the physical properties of these nanostructures, such as the dynamics of charge carriers on diffe... Read More about Light-Induced Stark Effect and Reversible Photoluminescence Quenching in Inorganic Perovskite Nanocrystals.

Resonance and antiresonance in Raman scattering in GaSe and InSe crystals (2021)
Journal Article
Osiekowicz, M., Staszczuk, D., Olkowska-Pucko, K., Kipczak, Ł., Grzeszczyk, M., Zinkiewicz, M., Nogajewski, K., Kudrynskyi, Z. R., Kovalyuk, Z. D., Patané, A., Babiński, A., & Molas, M. R. (2021). Resonance and antiresonance in Raman scattering in GaSe and InSe crystals. Scientific Reports, 11(1), Article 924. https://doi.org/10.1038/s41598-020-79411-x

The temperature effect on the Raman scattering efficiency is investigated in ε-GaSe and γ-InSe crystals. We found that varying the temperature over a broad range from 5 to 350 K permits to achieve both the resonant conditions and the antiresonance be... Read More about Resonance and antiresonance in Raman scattering in GaSe and InSe crystals.

Anomalous Low Thermal Conductivity of Atomically Thin InSe Probed by Scanning Thermal Microscopy (2021)
Journal Article
Buckley, D., Kudrynskyi, Z. R., Balakrishnan, N., Vincent, T., Mazumder, D., Castanon, E., Kovalyuk, Z. D., Kolosov, O., Kazakova, O., Tzalenchuk, A., & Patanè, A. (2021). Anomalous Low Thermal Conductivity of Atomically Thin InSe Probed by Scanning Thermal Microscopy. Advanced Functional Materials, 31(11), Article 2008967. https://doi.org/10.1002/adfm.202008967

The ability of a material to conduct heat influences many physical phenomena, ranging from thermal management in nanoscale devices to thermoelectrics. Van der Waals two dimensional (2D) materials offer a versatile platform to tailor heat transfer due... Read More about Anomalous Low Thermal Conductivity of Atomically Thin InSe Probed by Scanning Thermal Microscopy.

The Interaction of Hydrogen with the van der Waals Crystal γ-InSe (2020)
Journal Article
Felton, J., Blundo, E., Ling, S., Glover, J., Kudrynskyi, Z. R., Makarovsky, O., Kovalyuk, Z. D., Besley, E., Walker, G., Polimeni, A., & Patané, A. (2020). The Interaction of Hydrogen with the van der Waals Crystal γ-InSe. Molecules, 25(11), Article 2526. https://doi.org/10.3390/molecules25112526

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide (γ-InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications... Read More about The Interaction of Hydrogen with the van der Waals Crystal γ-InSe.

Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN (2019)
Journal Article
Zhang, C., Turyanska, L., Cao, H., Zhao, L., Fay, M. W., Temperton, R., O'Shea, J., Thomas, N. R., Wang, K., Luan, W., & Patanè, A. (2019). Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN. Nanoscale, 11(28), 13450-13457. https://doi.org/10.1039/C9NR03707A

Despite important advances in the synthesis of inorganic perovskite nanocrystals (NCs), the long-term instability and degradation of their quantum yield (QY) over time need to be addressed to enable the further development and exploitation of these n... Read More about Hybrid light emitting diodes based on stable, high brightness all-inorganic CsPbI 3 perovskite nanocrystals and InGaN.

Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals (2014)
Journal Article
Turyanska, L., Hill, R. J. A., Makarovsky, O., Moro, F., Knott, A. N., Larkin, O. J., Patanè, A., Meaney, A., Christianen, P. C. M., Fay, M. W., & Curry, R. J. (2014). Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals. Nanoscale, 6(15), 8919-8925. https://doi.org/10.1039/c4nr02336f

We report on PbS colloidal nanocrystals that combine within one structure solubility in physiological solvents with near-infrared photoluminescence, and magnetic and optical properties tuneable by the controlled incorporation of magnetic impurities (... Read More about Tuneable paramagnetic susceptibility and exciton g-factor in Mn-doped PbS colloidal nanocrystals.

Band-gap profiling by laser writing of hydrogen-containing III-N-Vs (2012)
Journal Article
Balakrishnan, N., Pettinari, G., Makarovsky, O., Turyanska, L., Fay, M. W., De Luca, M., Polimeni, A., Capizzi, M., Martelli, F., Rubini, S., & Patanè, A. (2012). Band-gap profiling by laser writing of hydrogen-containing III-N-Vs. Physical review B: Condensed matter and materials physics, 86(15), Article 155307. https://doi.org/10.1103/PhysRevB.86.155307

We show that the dissociation of the N-H complex in hydrogenated III-N-Vs can be laser activated at temperatures that are significantly smaller than those (>200°C) required for thermal dissociation due to a resonant photon absorption by the N-H compl... Read More about Band-gap profiling by laser writing of hydrogen-containing III-N-Vs.