Skip to main content

Research Repository

Advanced Search

Outputs (35)

ABA-auxin cascade regulates crop root angle in response to drought (2025)
Journal Article
Xiong, Y., Song, X., Mehra, P., Yu, S., Li, Q., Tashenmaimaiti, D., Bennett, M., Kong, X., Bhosale, R., & Huang, G. (2025). ABA-auxin cascade regulates crop root angle in response to drought. Current Biology, 35(3), 542-553.e4. https://doi.org/10.1016/j.cub.2024.12.003

Enhancing drought resistance through the manipulation of root system architecture (RSA) in crops represents a crucial strategy for addressing food insecurity challenges. Abscisic acid (ABA) plays important roles in drought tolerance; yet, its molecul... Read More about ABA-auxin cascade regulates crop root angle in response to drought.

Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner (2024)
Preprint / Working Paper
Affortit, P., Faye, A., Jones, D. H., Benson, E., Sine, B., Burridge, J., Ndoye, M. S., Barry, L., Moukouanga, D., Barnard, S., Bhosale, R., Pridmore, T., Gantet, P., Vadez, V., Cubry, P., Kane, N., Bennett, M., Atkinson, J. A., Laplaze, L., Wells, D. M., & Grondin, A. (2024). Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner

Pearl millet is a key cereal for food security in drylands but its yield is strongly impacted by drought. We investigated how root anatomical traits contribute to mitigating the effects of vegetative drought stress in pearl millet.

We examined ass... Read More about Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner.

Integrating cryo-OrbiSIMS with computational modelling and metadynamics simulations enhances RNA structure prediction at atomic resolution (2024)
Journal Article
Ward, S., Childs, A., Staley, C., Waugh, C., Watts, J. A., Kotowska, A. M., Bhosale, R., & Borkar, A. N. (2024). Integrating cryo-OrbiSIMS with computational modelling and metadynamics simulations enhances RNA structure prediction at atomic resolution. Nature Communications, 15(1), Article 4367. https://doi.org/10.1038/s41467-024-48694-3

The 3D architecture of RNAs governs their molecular interactions, chemical reactions, and biological functions. However, a large number of RNAs and their protein complexes remain poorly understood due to the limitations of conventional structural bio... Read More about Integrating cryo-OrbiSIMS with computational modelling and metadynamics simulations enhances RNA structure prediction at atomic resolution.

The first intron of ARF7 is required for expression in root tips (2024)
Journal Article
Han, J., Welch, T., Voß, U., Vernoux, T., Bhosale, R., & Bishopp, A. (2024). The first intron of ARF7 is required for expression in root tips. iScience, 27(6), Article 109936. https://doi.org/10.1016/j.isci.2024.109936

Auxin regulates plant growth and development through the transcription factors of the AUXIN RESPONSE FACTOR (ARF) gene family. ARF7 is one of five activators that bind DNA and elicit downstream transcriptional responses. In roots, ARF7 regulates grow... Read More about The first intron of ARF7 is required for expression in root tips.

The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots (2024)
Journal Article
Fusi, R., Milner, S. G., Rosignoli, S., Bovina, R., De Jesus Vieira Teixeira, C., Lou, H., Atkinson, B. S., Borkar, A. N., York, L. M., Jones, D. H., Sturrock, C. J., Stein, N., Mascher, M., Tuberosa, R., O'Connor, D., Bennett, M. J., Bishopp, A., Salvi, S., & Bhosale, R. (2024). The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots. New Phytologist, 244(1), 104-115. https://doi.org/10.1111/nph.19777

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a... Read More about The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots.

Interplay between developmental cues and rhizosphere signals from mycorrhizal fungi shape root anatomy, impacting crop productivity (2024)
Journal Article
Grondin, A., Li, M., Bhosale, R., Sawers, R., & Schneider, H. M. (2024). Interplay between developmental cues and rhizosphere signals from mycorrhizal fungi shape root anatomy, impacting crop productivity. Plant and Soil, 503, 587-594. https://doi.org/10.1007/s11104-024-06611-z

Background: The rhizosphere is the interface between roots and the soil and the site of nutrient and water uptake for plant growth. Root anatomy and the physical, chemical, and biological components of the rhizosphere interact to influence plant grow... Read More about Interplay between developmental cues and rhizosphere signals from mycorrhizal fungi shape root anatomy, impacting crop productivity.

Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops (2024)
Journal Article
Kong, X., Xiong, Y., Song, X., Wadey, S., Yu, S., Rao, J., Lale, A., Lombardi, M., Fusi, R., Bhosale, R., & Huang, G. (2024). Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops. Plant Physiology, 195(3), 1969-1980. https://doi.org/10.1093/plphys/kiae134

Root angle is a critical factor in optimizing the acquisition of essential resources from different soil depths. The regulation of root angle relies on the auxin-mediated root gravitropism machinery. While the influence of ethylene on auxin levels is... Read More about Ethylene regulates auxin-mediated root gravitropic machinery and controls root angle in cereal crops.

A genomic toolkit for winged bean Psophocarpus tetragonolobus (2024)
Journal Article
Ho, W. K., Tanzi, A. S., Sang, F., Tsoutsoura, N., Shah, N., Moore, C., Bhosale, R., Wright, V., Massawe, F., & Mayes, S. (2024). A genomic toolkit for winged bean Psophocarpus tetragonolobus. Nature Communications, 15(1), Article 1901. https://doi.org/10.1038/s41467-024-45048-x

A sustainable supply of plant protein is critical for future generations and needs to be achieved while reducing green house gas emissions from agriculture and increasing agricultural resilience in the face of climate volatility. Agricultural diversi... Read More about A genomic toolkit for winged bean Psophocarpus tetragonolobus.

Challenges facing sustainable protein production: Opportunities for cereals (2023)
Journal Article
Safdar, L. B., Foulkes, M. J., Kleiner, F. H., Searle, I. R., Bhosale, R. A., Fisk, I. D., & Boden, S. A. (2023). Challenges facing sustainable protein production: Opportunities for cereals. Plant Communications, 4(6), Article 100716. https://doi.org/10.1016/j.xplc.2023.100716

Rising demands for protein worldwide are likely to drive increases in livestock production, as meat provides ∼40% of dietary protein. This will come at a significant environmental cost, and a shift toward plant-based protein sources would therefore p... Read More about Challenges facing sustainable protein production: Opportunities for cereals.

Reviving grain quality in wheat through non-destructive phenotyping techniques like hyperspectral imaging (2023)
Journal Article
Safdar, L. B., Dugina, K., Saeidan, A., Yoshicawa, G. V., Caporaso, N., Gapare, B., Umer, M. J., Bhosale, R. A., Searle, I. R., Foulkes, M. J., Boden, S. A., & Fisk, I. D. (2023). Reviving grain quality in wheat through non-destructive phenotyping techniques like hyperspectral imaging. Food and Energy Security, 12(5), Article e498. https://doi.org/10.1002/fes3.498

A long-term goal of breeders and researchers is to develop crop varieties that can resist environmental stressors and produce high yields. However, prioritising yield often compromises improvement of other key traits, including grain quality, which i... Read More about Reviving grain quality in wheat through non-destructive phenotyping techniques like hyperspectral imaging.