Skip to main content

Research Repository

Advanced Search

Outputs (4)

Precise spike-timing information in the brainstem is well aligned with the needs of communication and the perception of environmental sounds (2025)
Journal Article
Scholes, C., Coombes, S., Palmer, A. R., Rhode, W. S., Mill, R., & Sumner, C. J. (2025). Precise spike-timing information in the brainstem is well aligned with the needs of communication and the perception of environmental sounds. PLoS Biology, 23(6), Article e3003213. https://doi.org/10.1371/journal.pbio.3003213

The dynamic fluctuations in the amplitude of sound, known as sound envelopes, are ubiquitous in natural sounds and convey information critical for the recognition of speech, and of sounds generally. We are perceptually most sensitive to slow modulati... Read More about Precise spike-timing information in the brainstem is well aligned with the needs of communication and the perception of environmental sounds.

Understanding sensory induced hallucinations: From neural fields to amplitude equations (2021)
Journal Article
Nicks, R., Cocks, A., Avitabile, D., Johnston, A., & Coombes, S. (2021). Understanding sensory induced hallucinations: From neural fields to amplitude equations. SIAM Journal on Applied Dynamical Systems, 20(4), 1683-1714. https://doi.org/10.1137/20M1366885

Explorations of visual hallucinations, and in particular those of Billock and Tsou [V. A. Billock and B. H. Tsou, Proc. Natl. Acad. Sci. USA, 104 (2007), pp. 8490-8495], show that annular rings with a background flicker can induce visual hallucinatio... Read More about Understanding sensory induced hallucinations: From neural fields to amplitude equations.

Reinforcement Learning approaches to hippocampus-dependent flexible spatial navigation (2021)
Journal Article
Bast, T., Coombes, S., O’Dea, R., & Tessereau, C. (2021). Reinforcement Learning approaches to hippocampus-dependent flexible spatial navigation. Brain and Neuroscience Advances, 5, https://doi.org/10.1177/2398212820975634

Humans and non-human animals show great flexibility in spatial navigation, including the ability to return to specific locations based on as few as one single experience. To study spatial navigation in the laboratory, watermaze tasks, in which rats h... Read More about Reinforcement Learning approaches to hippocampus-dependent flexible spatial navigation.

Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity (2018)
Journal Article
Tewarie, P., Hunt, B. A. E., O'Neill, G. C., Byrne, A., Aquino, K., Bauer, M., Mullinger, K. J., Coombes, S., & Brookes, M. J. (2019). Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity. Cerebral Cortex, 29(6), 2668-2681. https://doi.org/10.1093/cercor/bhy136

Event related fluctuations of neural oscillatory amplitude are reported widely in the context of cognitive processing and are typically interpreted as a marker of brain ‘activity’. However, the precise nature of these effects remains unclear; in part... Read More about Relationships Between Neuronal Oscillatory Amplitude and Dynamic Functional Connectivity.