Skip to main content

Research Repository

Advanced Search

Outputs (2)

Lattice-Matched Epitaxial Graphene Grown on Boron Nitride (2017)
Journal Article
Davies, A., Albar, J., Summerfield, A., Thomas, J. C., Cheng, T. S., Korolkov, V. V., Stapleton, E., Wrigley, J., Goodey, N. L., Mellor, C. J., Khlobystov, A. N., Watanabe, K., Taniguchi, T., Foxon, C., Eaves, L., Novikov, S. V., & Beton, P. H. (2018). Lattice-Matched Epitaxial Graphene Grown on Boron Nitride. Nano Letters, 18(1), 498-504. https://doi.org/10.1021/acs.nanolett.7b04453

Lattice-matched graphene on hexagonal boron nitride is expected to lead to the formation of a band-gap but requires the formation of highly strained material and has not hitherto been realised. We demonstrate that aligned, lattice-matched graphene ca... Read More about Lattice-Matched Epitaxial Graphene Grown on Boron Nitride.

An atomic carbon source for high temperature molecular beam epitaxy of graphene (2017)
Journal Article
Albar, J., Summerfield, A., Cheng, T. S., Davies, A., Smith, E., Khlobystov, A. N., Mellor, C., Taniguchi, T., Watanabe, K., Foxon, C., Eaves, L., Beton, P. H., & Novikov, S. V. (in press). An atomic carbon source for high temperature molecular beam epitaxy of graphene. Scientific Reports, 7(1), Article 6598. https://doi.org/10.1038/s41598-017-07021-1

We report the use of a novel atomic carbon source for the molecular beam epitaxy (MBE) of graphene layers on hBN flakes and on sapphire wafers at substrate growth temperatures of ~1400 °C. The source produces a flux of predominantly atomic carbon, wh... Read More about An atomic carbon source for high temperature molecular beam epitaxy of graphene.