Skip to main content

Research Repository

Advanced Search

Outputs (5)

Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing (2023)
Journal Article
Shiffa, M., Dewes, B. T., Bradford, J., Cottam, N. D., Cheng, T. S., Mellor, C. J., Makarovskiy, O., Rahman, K., O'Shea, J. N., Beton, P. H., Novikov, S. V., Ben, T., Gonzalez, D., Xie, J., Zhang, L., & Patanè, A. (2024). Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing. Small, 20(7), Article 2305865. https://doi.org/10.1002/smll.202305865

2D semiconductors (2SEM) can transform many sectors, from information and communication technology to healthcare. To date, top‐down approaches to their fabrication, such as exfoliation of bulk crystals by “scotch‐tape,” are widely used, but have limi... Read More about Wafer-Scale Two-Dimensional Semiconductors for Deep UV Sensing.

Thermally stable quantum Hall effect in a gated ferroelectric-graphene heterostructure (2023)
Journal Article
Dey, A., Cottam, N., Makarovskiy, O., Yan, W., Mišeikis, V., Coletti, C., Kerfoot, J., Korolkov, V., Eaves, L., Linnartz, J. F., Kool, A., Wiedmann, S., & Patanè, A. (2023). Thermally stable quantum Hall effect in a gated ferroelectric-graphene heterostructure. Communications Physics, 6, Article 216. https://doi.org/10.1038/s42005-023-01340-8

The quantum Hall effect is widely used for the investigation of fundamental phenomena, ranging from topological phases to composite fermions. In particular, the discovery of a room temperature resistance quantum in graphene is significant for compact... Read More about Thermally stable quantum Hall effect in a gated ferroelectric-graphene heterostructure.

Direct Measurements of Anisotropic Thermal Transport in γ-InSe Nanolayers via Cross-Sectional Scanning Thermal Microscopy (2023)
Journal Article
Gonzalez-Munoz, S., Agarwal, K., Castanon, E. G., Kudrynskyi, Z. R., Kovalyuk, Z. D., Spièce, J., Kazakova, O., Patanè, A., & Kolosov, O. V. (2023). Direct Measurements of Anisotropic Thermal Transport in γ-InSe Nanolayers via Cross-Sectional Scanning Thermal Microscopy. Advanced Materials Interfaces, 10(17), Article 2300081. https://doi.org/10.1002/admi.202300081

Van der Waals (vdW) atomically thin materials and their heterostructures offer a versatile platform for the management of nanoscale heat transport and the design of novel thermoelectrics. These require the measurement of highly anisotropic heat trans... Read More about Direct Measurements of Anisotropic Thermal Transport in γ-InSe Nanolayers via Cross-Sectional Scanning Thermal Microscopy.

Subnanometer-Wide Indium Selenide Nanoribbons (2023)
Journal Article
Cull, W. J., Skowron, S. T., Hayter, R., Stoppiello, C. T., Rance, G. A., Biskupek, J., Kudrynskyi, Z. R., Kovalyuk, Z. D., Allen, C. S., Slater, T. J. A., Kaiser, U., Patanè, A., & Khlobystov, A. N. (2023). Subnanometer-Wide Indium Selenide Nanoribbons. ACS Nano, 17(6), 6062-6072. https://doi.org/10.1021/acsnano.3c00670

Indium selenides (InxSey) have been shown to retain several desirable properties, such as ferroelectricity, tunable photoluminescence through temperature-controlled phase changes, and high electron mobility when confined to two dimensions (2D). In th... Read More about Subnanometer-Wide Indium Selenide Nanoribbons.

Graphene FETs with high and low mobilities have universal temperature-dependent properties (2023)
Journal Article
Gosling, J., Morozov, S. V., Vdovin, E. E., Greenaway, M. T., Khanin, Y. N., Kudrynskyi, Z., Patanè, A., Eaves, L., Turyanska, L., Fromhold, T. M., & Makarovsky, O. (2023). Graphene FETs with high and low mobilities have universal temperature-dependent properties. Nanotechnology, 34(12), Article 125702. https://doi.org/10.1088/1361-6528/aca981

We use phenomenological modelling and detailed experimental studies of charge carrier transport to investigate the dependence of the electrical resistivity,ρ, on gate voltage,Vg, for a series of monolayer graphene field effect transistors with mobili... Read More about Graphene FETs with high and low mobilities have universal temperature-dependent properties.