Skip to main content

Research Repository

Advanced Search

Outputs (12)

The influence of surface charge on the coalescence of ice and dust particles in the mesosphere (2020)
Preprint / Working Paper
Baptiste, J., Williamson, C., Fox, J., Stace, A. J., Hassan, M., Braun, S., Stamm, B., Mann, I., & Besley, E. The influence of surface charge on the coalescence of ice and dust particles in the mesosphere

Agglomeration of charged ice and dust particles in the mesosphere is studied using a classical electrostatic approach, which is extended to capture the induced polarisation of surface charge. Collision outcomes are predicted whilst varying particle s... Read More about The influence of surface charge on the coalescence of ice and dust particles in the mesosphere.

Molecular Quantum Rings Formed from a π -Conjugated Macrocycle (2020)
Journal Article
Judd, C. J., Nizovtsev, A. S., Plougmann, R., Kondratuk, D. V., Anderson, H. L., Besley, E., & Saywell, A. (2020). Molecular Quantum Rings Formed from a π -Conjugated Macrocycle. Physical Review Letters, 125(20), Article 206803. https://doi.org/10.1103/PhysRevLett.125.206803

The electronic structure of a molecular quantum ring (stacks of 40-unit cyclic porphyrin polymers) is characterized via scanning tunneling microscopy and scanning tunneling spectroscopy. Our measurements access the energetic and spatial distribution... Read More about Molecular Quantum Rings Formed from a π -Conjugated Macrocycle.

Porous Metal–Organic Polyhedra: Morphology, Porosity, and Guest Binding (2020)
Journal Article
Argent, S. P., Da Silva, I., Greenaway, A., Savage, M., Humby, J., Davies, A. J., Nowell, H., Lewis, W., Manuel, P., Tang, C. C., Blake, A. J., George, M. W., Markevich, A. V., Besley, E., Yang, S., Champness, N. R., & Schröder, M. (2020). Porous Metal–Organic Polyhedra: Morphology, Porosity, and Guest Binding. Inorganic Chemistry, 59(21), 15646-15658. https://doi.org/10.1021/acs.inorgchem.0c01935

Designing porous materials which can selectively adsorb CO2 or CH4 is an important environmental and industrial goal which requires an understanding of the host-guest interactions involved at the atomic scale. Metal-organic polyhedra (MOPs) showing p... Read More about Porous Metal–Organic Polyhedra: Morphology, Porosity, and Guest Binding.

Low dimensional nanostructures of fast ion conducting lithium nitride (2020)
Journal Article
Tapia-Ruiz, N., Gordon, A. G., Jewell, C. M., Edwards, H. K., Dunnill, C. W., Blackman, J. M., Snape, C. P., Brown, P. D., MacLaren, I., Baldoni, M., Besley, E., Titman, J. J., & Gregory, D. H. (2020). Low dimensional nanostructures of fast ion conducting lithium nitride. Nature Communications, 11, Article 4492. https://doi.org/10.1038/s41467-020-17951-6

As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride is a material with remarkable properties and a model material for energy applications involving the transport of lithium ions. Following a materials desig... Read More about Low dimensional nanostructures of fast ion conducting lithium nitride.

Low dimensional nanostructures of fast ion conducting lithium nitride (2020)
Journal Article
Tapia-Ruiz, N., Gordon, A. G., Jewell, C. M., Edwards, H. K., Dunnill, C. W., Blackman, J. M., Snape, C. P., Brown, P. D., MacLaren, I., Baldoni, M., Besley, E., Titman, J. J., & Gregory, D. H. (2020). Low dimensional nanostructures of fast ion conducting lithium nitride. Nature Communications, 11(1), Article 4492. https://doi.org/10.1038/s41467-020-17951-6

© 2020, The Author(s). As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride possesses remarkable properties and is a model material for energy applications involving the transport of lithium ions. Following... Read More about Low dimensional nanostructures of fast ion conducting lithium nitride.

Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube (2020)
Journal Article
Cao, K., Biskupek, J., Stoppiello, C. T., McSweeney, R. L., Chamberlain, T. W., Liu, Z., Suenaga, K., Skowron, S. T., Besley, E., Khlobystov, A. N., & Kaiser, U. (2020). Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube. Nature Chemistry, 12, 921–928. https://doi.org/10.1038/s41557-020-0538-9

Knowing how crystals nucleate at the atomic scale is crucial for understanding, and in turn controlling, the structure and properties of a wide variety of materials. However, because of the scale and highly dynamic nature of nuclei, the formation and... Read More about Atomic mechanism of metal crystal nucleus formation in a single-walled carbon nanotube.

Bond Dissociation and Reactivity of HF and H2O in a Nano Test Tube (2020)
Journal Article
Biskupek, J., Skowron, S. T., Stoppiello, C. T., Alom, S., Rance, G. A., Fung, K. L. Y., Whitby, R. J., Levitt, M. H., Besley, E., Ramasse, Q. M., Kaiser, U., & Khlobystov, A. N. (2020). Bond Dissociation and Reactivity of HF and H2O in a Nano Test Tube. ACS Nano, 14(9), 11178-11189. https://doi.org/10.1021/acsnano.0c02661

Molecular motion and bond dissociation are two of the most fundamental phenomena underpinning the properties of molecular materials. We entrapped HF and H2O molecules within the fullerene C60 cage, encapsulated within a single-walled carbon nanotube... Read More about Bond Dissociation and Reactivity of HF and H2O in a Nano Test Tube.

The Interaction of Hydrogen with the van der Waals Crystal γ-InSe (2020)
Journal Article
Felton, J., Blundo, E., Ling, S., Glover, J., Kudrynskyi, Z. R., Makarovsky, O., Kovalyuk, Z. D., Besley, E., Walker, G., Polimeni, A., & Patané, A. (2020). The Interaction of Hydrogen with the van der Waals Crystal γ-InSe. Molecules, 25(11), Article 2526. https://doi.org/10.3390/molecules25112526

The emergence of the hydrogen economy requires development in the storage, generation and sensing of hydrogen. The indium selenide (γ-InSe) van der Waals (vdW) crystal shows promise for technologies in all three of these areas. For these applications... Read More about The Interaction of Hydrogen with the van der Waals Crystal γ-InSe.

Noncovalent passivation of supported phosphorene for device applications: from morphology to electronic properties (2020)
Journal Article
Lorenzoni, A., Baldoni, M., Besley, E., & Mercuri, F. (2020). Noncovalent passivation of supported phosphorene for device applications: from morphology to electronic properties. Physical Chemistry Chemical Physics, 2020(22), 12482-12488. https://doi.org/10.1039/d0cp00939c

An interface between poly(methyl-methacrylate) PMMA-supported phosphorene and layers of linear alkane chains has been studied computationally to reveal an efficient route to noncovalent passivation in terms of the effective coverage of surface area.... Read More about Noncovalent passivation of supported phosphorene for device applications: from morphology to electronic properties.

Self‐Assembly Behavior of Oppositely Charged Inverse Bipatchy Microcolloids (2020)
Journal Article
Naderi Mehr, F., Grigoriev, D., Heaton, R., Baptiste, J., Stace, A. J., Puretskiy, N., Besley, E., & Böker, A. (2020). Self‐Assembly Behavior of Oppositely Charged Inverse Bipatchy Microcolloids. Small, 16(4), Article 2000442. https://doi.org/10.1002/smll.202000442

A directed attractive interaction between predefined “patchy” sites on the surfaces of anisotropic microcolloids can provide them with the ability to self‐assemble in a controlled manner to build target structures of increased complexity. An importan... Read More about Self‐Assembly Behavior of Oppositely Charged Inverse Bipatchy Microcolloids.