Nuria Tapia-Ruiz
Low dimensional nanostructures of fast ion conducting lithium nitride
Tapia-Ruiz, Nuria; Gordon, Alexandra G.; Jewell, Catherine M.; Edwards, Hannah K.; Dunnill, Charles W.; Blackman, James M.; Snape, Colin P.; Brown, Paul D.; MacLaren, Ian; Baldoni, Matteo; Besley, Elena; Titman, Jeremy J.; Gregory, Duncan H.
Authors
Alexandra G. Gordon
Catherine M. Jewell
Hannah K. Edwards
Charles W. Dunnill
James M. Blackman
Professor Colin Snape COLIN.SNAPE@NOTTINGHAM.AC.UK
PROFESSOR OF CHEMICAL TECHNOLOGY & CHEMICAL ENG
Professor PAUL BROWN PAUL.BROWN@NOTTINGHAM.AC.UK
PROFESSOR OF MATERIALS CHARACTERISATION
Ian MacLaren
Matteo Baldoni
Professor ELENA BESLEY ELENA.BESLEY@NOTTINGHAM.AC.UK
PROFESSOR OF THEORETICAL COMPUTATIONAL CHEMISTRY
Jeremy J. Titman
Duncan H. Gregory
Abstract
As the only stable binary compound formed between an alkali metal and nitrogen, lithium nitride is a material with remarkable properties and a model material for energy applications involving the transport of lithium ions. Following a materials design principle drawn from broad structural analogies to hexagonal graphene and boron nitride, we demonstrate that 1D (wire/fibre) lithium nitride nanostructures can be grown despite the absence of an equivalent van der Waals gap. To our knowledge, these are the first examples of anisotropic nanomaterials synthesized from an s-block element and nitrogen. Lithium-ion diffusion is enhanced compared to the bulk compound, yielding materials with exceptional ionic mobility. Lithium nitride demonstrates that in principle it is conceivable to construct ionic inorganic nanostructures by assembling monolayers without the requirement of a van der Waals gap. Computational studies on α-Li3N demonstrate an electronic structure mediated by the number of Li-N layers, with a transition from a bulk narrow bandgap semiconductor to a metal at the nanoscale.
Citation
Tapia-Ruiz, N., Gordon, A. G., Jewell, C. M., Edwards, H. K., Dunnill, C. W., Blackman, J. M., Snape, C. P., Brown, P. D., MacLaren, I., Baldoni, M., Besley, E., Titman, J. J., & Gregory, D. H. (2020). Low dimensional nanostructures of fast ion conducting lithium nitride. Nature Communications, 11, Article 4492. https://doi.org/10.1038/s41467-020-17951-6
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 28, 2020 |
Online Publication Date | Sep 8, 2020 |
Publication Date | Sep 8, 2020 |
Deposit Date | Aug 3, 2020 |
Publicly Available Date | Oct 12, 2020 |
Journal | Nature Communications |
Electronic ISSN | 2041-1723 |
Publisher | Nature Publishing Group |
Peer Reviewed | Peer Reviewed |
Volume | 11 |
Article Number | 4492 |
DOI | https://doi.org/10.1038/s41467-020-17951-6 |
Keywords | General Physics and Astronomy; General Biochemistry, Genetics and Molecular Biology; General Chemistry |
Public URL | https://nottingham-repository.worktribe.com/output/4807899 |
Publisher URL | https://www.nature.com/articles/s41467-020-17951-6 |
Files
Low dimensional nanostructures
(1.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
You might also like
Valorization Strategies in CO2 Capture: A New Life for Exhausted Silica-Polyethylenimine
(2023)
Journal Article
Low-temperature chemical looping oxidation of hydrogen for space heating
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search