Skip to main content

Research Repository

Advanced Search

Outputs (6)

The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men (2020)
Journal Article
Davies, R. W., Bass, J. J., Carson, B. P., Norton, C., Kozior, M., Wilkinson, D. J., Brook, M. S., Atherton, P. J., Smith, K., & Jakeman, P. M. (2020). The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men. Nutrients, 12(3), Article 845. https://doi.org/10.3390/nu12030845

Background: The aim of this study was to investigate the effect of whey protein supplementation on myofibrillar protein synthesis (myoPS) and muscle recovery over a 7-d period of intensified resistance training (RT). Methods: In a double-blind random... Read More about The Effect of Whey Protein Supplementation on Myofibrillar Protein Synthesis and Performance Recovery in Resistance-Trained Men.

A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults (2018)
Journal Article
Din, U., Brook, M., Selby, A. L., Quinlan, J. I., Boereboom, C., Abdullah, H., Franchi, M., Narici, M. V., Phillips, B. E., Williams, J., Rathmacher, J. A., Wilkinson, D., Atherton, P. J., & Smith, K. (2019). A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults. Clinical Nutrition, 38(5), 2071-2078. https://doi.org/10.1016/j.clnu.2018.09.025

Age-related sarcopenia and dynapenia are associated with frailty and metabolic diseases. Resistance exercise training (RET) adjuvant to evidence-based nutritional intervention(s) have been shown as mitigating strategies. Given that HMB supplementatio... Read More about A double-blind placebo controlled trial into the impacts of HMB supplementation and exercise on free-living muscle protein synthesis, muscle mass and function, in older adults.

Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training (2018)
Journal Article
Ahtiainen, J. P., Lensu, S., Ruotsalainen, I., Schumann, M., Ihalainen, J. K., Fachada, V., Mendias, C. L., Brook, M. S., Smith, K., Atherton, P. J., Koch, L. G., Britton, S. L., & Kainulainen, H. (2018). Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training. Experimental Physiology, https://doi.org/10.1113/ep087144

The purpose of this study was to determine whether rats selectively bred for low and high response to aerobic exercise training co-segregate for differences in muscle adaptations to ladder-climbing resistance training. Five high-responder (HRT) and f... Read More about Physiological adaptations to resistance training in rats selectively bred for low and high response to aerobic exercise training.

Impact of the calcium form of β-hydroxy-β-methylbutyrate upon human skeletal muscle protein metabolism (2017)
Journal Article
Wilkinson, D. J., Hossain, T., Limb, M. C., Phillips, B. E., Lund, J., Williams, J. P., Brook, M. S., Cegielski, J., Philp, A., Ashcroft, S., Rathmacher, J. A., Szewczyk, N. J., Smith, K., & Atherton, P. J. (2018). Impact of the calcium form of β-hydroxy-β-methylbutyrate upon human skeletal muscle protein metabolism. Clinical Nutrition, 37(6), 2068-2075. https://doi.org/10.1016/j.clnu.2017.09.024

Background & aims: β-hydroxy-β-methylbutyrate (HMB) is purported as a key nutritional supplement for the preservation of muscle mass in health, disease and as an ergogenic aid in exercise. Of the two available forms of HMB (calcium (Ca-HMB) salt or f... Read More about Impact of the calcium form of β-hydroxy-β-methylbutyrate upon human skeletal muscle protein metabolism.

Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women (2017)
Journal Article
Wilkinson, D. J., Bukhari, S. S., Phillips, B. E., Limb, M. C., Cegielski, J., Brook, M. S., Rankin, D., Mitchell, W. K., Kobayashi, H., Lund, J., Williams, J. P., Greenhaff, P. L., Smith, K., & Atherton, P. J. (2018). Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women. Clinical Nutrition, 37(6), 2011-2021. https://doi.org/10.1016/j.clnu.2017.09.008

© 2017 The Authors Background & aims: Impaired anabolic responses to nutrition and exercise contribute to loss of skeletal muscle mass with ageing (sarcopenia). Here, we tested responses of muscle protein synthesis (MPS), in the under represented gr... Read More about Effects of leucine-enriched essential amino acid and whey protein bolus dosing upon skeletal muscle protein synthesis at rest and after exercise in older women.

Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans (2016)
Journal Article
Brook, M. S., Wilkinson, D. J., Mitchell, W. K., Lund, J. N., Phillips, B. E., Szewczyk, N. J., Greenhaff, P. L., Smith, K., & Atherton, P. J. (2016). Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans. Journal of Physiology, 594(24), 7399-7417. https://doi.org/10.1113/JP272857

Ageing is associated with impaired hypertrophic responses to resistance exercise training (RET). Here we investigated the aetiology of ‘anabolic resistance’ in older humans. Twenty healthy male individuals, 10 younger (Y; 23 ± 1 years) and 10 older (... Read More about Synchronous deficits in cumulative muscle protein synthesis and ribosomal biogenesis underlie age-related anabolic resistance to exercise in humans.