Skip to main content

Research Repository

Advanced Search

Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning (2019)
Journal Article
Witman, M., Ling, S., Grant, D. M., Walker, G. S., Agarwal, S., Stavila, V., & Allendorf, M. D. (2020). Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning. Journal of Physical Chemistry Letters, 11(1), 40-47. https://doi.org/10.1021/acs.jpclett.9b02971

An open question in the metal hydride community is whether there are simple, physics-based design rules that dictate the thermodynamic properties of these materials across the variety of structures and chemistry they can exhibit. While black box mach... Read More about Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning.

Layered Al2O3-SiO2 and Al2O3-Ta2O5 thin-film composites for high dielectric strength, deposited by pulsed direct current and radio frequency magnetron sputtering (2019)
Journal Article
Hanby, B. V., Stuart, B. W., Gimeno-Fabra, M., Moffat, J., Gerada, C., & Grant, D. M. (2019). Layered Al2O3-SiO2 and Al2O3-Ta2O5 thin-film composites for high dielectric strength, deposited by pulsed direct current and radio frequency magnetron sputtering. Applied Surface Science, 492, 328-336. https://doi.org/10.1016/j.apsusc.2019.06.202

Multilayer thin films have the potential to act as high dielectric strength insulation for wire and microelectronics. In this study, films consisting of 2, 4 or 8 layers, composed of Al2O3 with SiO2 or Ta2O5, were prepared via pulsed direct current a... Read More about Layered Al2O3-SiO2 and Al2O3-Ta2O5 thin-film composites for high dielectric strength, deposited by pulsed direct current and radio frequency magnetron sputtering.