Skip to main content

Research Repository

Advanced Search

Professor MALCOLM BENNETT's Outputs (9)

Root RADAR: how 'rhizocrine' signals allow roots to detect and respond to their soil environment and stresses (2024)
Journal Article
Pandey, B. K., George, T. S., Cooper, H. V., Sturrock, C. J., Bennett, T., & Bennett, M. J. (2024). Root RADAR: how 'rhizocrine' signals allow roots to detect and respond to their soil environment and stresses. Journal of Experimental Botany, Article erae490. https://doi.org/10.1093/jxb/erae490

Agricultural intensification coupled with changing climate are causing soils to become increasingly vulnerable to stresses such as drought, soil erosion and compaction. The mechanisms by which roots detect and respond to soil stresses remains poorly... Read More about Root RADAR: how 'rhizocrine' signals allow roots to detect and respond to their soil environment and stresses.

Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner (2024)
Preprint / Working Paper
Affortit, P., Faye, A., Jones, D. H., Benson, E., Sine, B., Burridge, J., Ndoye, M. S., Barry, L., Moukouanga, D., Barnard, S., Bhosale, R., Pridmore, T., Gantet, P., Vadez, V., Cubry, P., Kane, N., Bennett, M., Atkinson, J. A., Laplaze, L., Wells, D. M., & Grondin, A. (2024). Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner

Pearl millet is a key cereal for food security in drylands but its yield is strongly impacted by drought. We investigated how root anatomical traits contribute to mitigating the effects of vegetative drought stress in pearl millet.

We examined ass... Read More about Root metaxylem area influences drought tolerance and transpiration in pearl millet in a soil texture dependent manner.

The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots (2024)
Journal Article
Fusi, R., Milner, S. G., Rosignoli, S., Bovina, R., De Jesus Vieira Teixeira, C., Lou, H., Atkinson, B. S., Borkar, A. N., York, L. M., Jones, D. H., Sturrock, C. J., Stein, N., Mascher, M., Tuberosa, R., O'Connor, D., Bennett, M. J., Bishopp, A., Salvi, S., & Bhosale, R. (2024). The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots. New Phytologist, 244(1), 104-115. https://doi.org/10.1111/nph.19777

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a... Read More about The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots.

Root hairs facilitate rice root penetration into compacted layers (2024)
Journal Article
Kong, X., Yu, S., Xiong, Y., Song, X., Nevescanin-Moreno, L., Wei, X., Rao, J., Zhou, H., Bennett, M. J., Pandey, B. K., & Huang, G. (2024). Root hairs facilitate rice root penetration into compacted layers. Current Biology, 34(10), 2039-2048. https://doi.org/10.1016/j.cub.2024.03.064

Compacted soil layers adversely affect rooting depth and access to deeper nutrient and water resources, thereby impacting climate resilience of crop production and global food security. Root hair plays well-known roles in facilitating water and nutri... Read More about Root hairs facilitate rice root penetration into compacted layers.

Genetic regulation of the root angle in cereals (2024)
Journal Article
Kirschner, G. K., Hochholdinger, F., Salvi, S., Bennett, M. J., Huang, G., & Bhosale, R. A. (2024). Genetic regulation of the root angle in cereals. Trends in Plant Science, 29(7), 814-822. https://doi.org/10.1016/j.tplants.2024.01.008

The root angle plays a critical role in efficiently capturing nutrients and water from different soil layers. Steeper root angles enable access to mobile water and nitrogen from deeper soil layers, whereas shallow root angles facilitate the capture o... Read More about Genetic regulation of the root angle in cereals.

Root plasticity vs. elasticity – When are responses acclimative? (2024)
Journal Article
Colombi, T., Pandey, B. K., Chawade, A., Bennett, M. J., Mooney, S., & Keller, T. (2024). Root plasticity vs. elasticity – When are responses acclimative?. Trends in Plant Science, 29(8), 856-864. https://doi.org/10.1016/j.tplants.2024.01.003

Spatiotemporal soil heterogeneity and the resulting edaphic stress cycles can be decisive for crop growth. However, our understanding of the acclimative value of root responses to heterogeneous soil conditions remains limited. We outline a framework... Read More about Root plasticity vs. elasticity – When are responses acclimative?.

Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-. S., Barrachina, C., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, https://doi.org/10.7554/eLife.86169

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.

Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Journal Article
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-S., Barrachina, C., …Laplaze, L. (2024). Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet. eLife, 12, Article RP86169. https://doi.org/10.7554/elife.86169.3

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.

Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet (2024)
Preprint / Working Paper
de la Fuente, C., Grondin, A., Sine, B., Debieu, M., Belin, C., Hajjarpoor, A., Atkinson, J. A., Passot, S., Salson, M., Orjuela, J., Tranchant-Dubreuil, C., Brossier, J.-R., Steffen, M., Morgado, C., Dinh, H. N., Pandey, B. K., Darmau, J., Champion, A., Petitot, A.-S., Barrachina, C., …Laplaze, L. Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet’s early root sy... Read More about Author Response: Glutaredoxin regulation of primary root growth is associated with early drought stress tolerance in pearl millet.