Skip to main content

Research Repository

Advanced Search

Professor MALCOLM BENNETT's Outputs (4)

The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots (2024)
Journal Article
Fusi, R., Milner, S. G., Rosignoli, S., Bovina, R., De Jesus Vieira Teixeira, C., Lou, H., Atkinson, B. S., Borkar, A. N., York, L. M., Jones, D. H., Sturrock, C. J., Stein, N., Mascher, M., Tuberosa, R., O'Connor, D., Bennett, M. J., Bishopp, A., Salvi, S., & Bhosale, R. (2024). The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots. New Phytologist, 244(1), 104-115. https://doi.org/10.1111/nph.19777

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a... Read More about The auxin efflux carrier PIN1a regulates vascular patterning in cereal roots.

Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism (2022)
Journal Article
Fusi, R., Rosignoli, S., Lou, H., Sangiorgi, G., Bovina, R., Pattem, J. K., Borkar, A. N., Lombardi, M., Forestan, C., Milner, S. G., Davis, J. L., Lale, A., Kirschner, G. K., Swarup, R., Tassinari, A., Pandey, B. K., York, L. M., Atkinson, B. S., Sturrock, C. J., Mooney, S. J., …Salvi, S. (2022). Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism. Proceedings of the National Academy of Sciences,

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus anti-gravitropic offset (AGO) mechanisms. Here we report a new root angle regulatory gene termed ENHANCED GRA... Read More about Root angle is controlled by EGT1in cereal crops employing anantigravitropic mechanism.

Tuberculosis in badgers where the bovine tuberculosis epidemic is expanding in cattle in England (2021)
Journal Article
Swift, B. M. C., Barron, E. S., Christley, R., Corbetta, D., Grau-Roma, L., Jewell, C., O’Cathail, C., Mitchell, A., Phoenix, J., Prosser, A., Rees, C., Sorley, M., Verin, R., & Bennett, M. (2021). Tuberculosis in badgers where the bovine tuberculosis epidemic is expanding in cattle in England. Scientific Reports, 11(1), Article 20995. https://doi.org/10.1038/s41598-021-00473-6

Bovine tuberculosis (bTB) is an important animal health and economic problem for the cattle industry and a potential zoonotic threat. Wild badgers (Meles meles) play a role on its epidemiology in some areas of high prevalence in cattle, particularly... Read More about Tuberculosis in badgers where the bovine tuberculosis epidemic is expanding in cattle in England.

Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15) (2021)
Journal Article
Schneider, H. M., Lor, V. S. N., Hanlon, M. T., Perkins, A., Kaeppler, S. M., Borkar, A. N., Bhosale, R., Zhang, X., Rodriguez, J., Bucksch, A., Bennett, M. J., Brown, K. M., & Lynch, J. P. (2022). Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15). Plant, Cell and Environment, 45(3), 837-853. https://doi.org/10.1111/pce.14135

Crops with reduced nutrient and water requirements are urgently needed in global agriculture. Root growth angle plays an important role in nutrient and water acquisition. A maize diversity panel of 481 genotypes was screened for variation in root ang... Read More about Root angle in maize influences nitrogen capture and is regulated by calcineurin B-like protein (CBL)-interacting serine/threonine-protein kinase 15 (ZmCIPK15).