Skip to main content

Research Repository

Advanced Search

Professor PAUL WILLIAMS's Outputs (3)

Quorum sensing signals of the grapevine crown gall bacterium, Novosphingobium sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones (2024)
Journal Article
Gan, H. M., Dailey, L., Wengert, P., Halliday, N., Williams, P., Hudson, A., & Savka, M. A. (2024). Quorum sensing signals of the grapevine crown gall bacterium, Novosphingobium sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones. PeerJ, 12, Article e18657. https://doi.org/10.7717/peerj.18657

Background: A grapevine crown gall tumor strain, Novosphingobium sp. strain Rr2- 17 was previously reported to accumulate copious amounts of diverse quorum sensing signals during growth. Genome sequencing identified a single luxI homolog in strain Rr... Read More about Quorum sensing signals of the grapevine crown gall bacterium, Novosphingobium sp. Rr2-17: use of inducible expression and polymeric resin to sequester acyl-homoserine lactones.

Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study (2024)
Journal Article
Kalenderski, K., Dubern, J.-F., Lewis-Lloyd, C., Jeffery, N., Heeb, S., Irvine, D. J., Sloan, T. J., Birch, B., Andrich, D., Humes, D., Alexander, M. R., & Williams, P. (2024). Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study. Journal of Urology Open PLus, 2(1), Article e00005. https://doi.org/10.1097/JU9.0000000000000097

Purpose: Biofilm formation and biomineralization on urinary catheters may cause severe complications including infection and obstruction. Here, we describe an in vitro evaluation and prospective pilot clinical study of a silicone catheter coated with... Read More about Polymer-Coated Urinary Catheter Reduces Biofilm Formation and Biomineralization: A First-in-Man, Prospective Pilot Study.

Design, Synthesis, and Evaluation of New 1H-Benzo[d]imidazole Based PqsR Inhibitors as Adjuvant Therapy for Pseudomonas aeruginosa Infections (2024)
Journal Article
Soukarieh, F., Mashabi, A., Richardson, W., Oton, E. V., Romero, M., Dubern, J.-F., Robertson, S. N., Lucanto, S., Markham-Lee, Z., Sou, T., Kukavica-Ibrulj, I., Levesque, R. C., Bergstrom, C. A., Halliday, N., Kellam, B., Emsley, J., Heeb, S., Williams, P., Stocks, M. J., & Cámara, M. (2024). Design, Synthesis, and Evaluation of New 1H-Benzo[d]imidazole Based PqsR Inhibitors as Adjuvant Therapy for Pseudomonas aeruginosa Infections. Journal of Medicinal Chemistry, 67(2), 1008-1023. https://doi.org/10.1021/acs.jmedchem.3c00973

Pseudomonas aeruginosa is one of the top priority pathogens that requires immediate attention according to the World Health Organisation (WHO). Due to the alarming shortage of novel antimicrobials, targeting quorum sensing (QS), a bacterial cell to c... Read More about Design, Synthesis, and Evaluation of New 1H-Benzo[d]imidazole Based PqsR Inhibitors as Adjuvant Therapy for Pseudomonas aeruginosa Infections.