Skip to main content

Research Repository

Advanced Search

Professor CHRISTOPHER TUCK's Outputs (3)

Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting (2018)
Journal Article
Holland, S., Tuck, C., & Foster, T. (2018). Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting. Carbohydrate Polymers, 200, 229-238. https://doi.org/10.1016/j.carbpol.2018.07.064

Binder jetting is an additive manufacturing technique in which powdered material is sequentially laid down and printed on by an ink binder, in a selective manner, to form a 3D object. Unfortunately work in this area relevant to food materials is larg... Read More about Selective recrystallization of cellulose composite powders and microstructure creation through 3D binder jetting.

Fluid gels: a new feedstock for high viscosity jetting (2018)
Journal Article
Holland, S., Tuck, C., & Foster, T. (2018). Fluid gels: a new feedstock for high viscosity jetting. Food Biophysics, 13(2), https://doi.org/10.1007/s11483-018-9523-x

Suspensions of gel particles which are pourable or spoonable at room temperature can be created by shearing a gelling biopolymer through its gelation (thermal or ion mediated) rather than allowing quiescent cooling – thus the term ‘fluid gel’ may be... Read More about Fluid gels: a new feedstock for high viscosity jetting.

Design and characterisation of food grade powders and inks for microstructure control using 3D printing (2017)
Journal Article
Holland, S., Foster, T., MacNaughtan, W., & Tuck, C. (2018). Design and characterisation of food grade powders and inks for microstructure control using 3D printing. Journal of Food Engineering, 220, 12-19. https://doi.org/10.1016/j.jfoodeng.2017.06.008

Additive Manufacturing techniques have been previously applied to food materials with direct consumption in mind, as opposed to creating structural ingredients as shown in this study. First, semi-crystalline cellulose was mechanically treated by ball... Read More about Design and characterisation of food grade powders and inks for microstructure control using 3D printing.