Skip to main content

Research Repository

Advanced Search

Professor DRAGOS AXINTE's Outputs (12)

Efficient and Scalable Inverse Kinematics for Continuum Robots (2023)
Journal Article
Wild, S., Zeng, T., Mohammad, A., Billingham, J., Axinte, D., & Dong, X. (2024). Efficient and Scalable Inverse Kinematics for Continuum Robots. IEEE Robotics and Automation Letters, 9(1), 375 - 381. https://doi.org/10.1109/lra.2023.3331291

With their flexible nature, continuum robots offer hyper-redundancy regarding their workspace; their backbone can take many shapes upon a single tip position and orientation. Deciphering which backbone shape to use under certain conditions is crucial... Read More about Efficient and Scalable Inverse Kinematics for Continuum Robots.

A rational approach to beam path planning in additive manufacturing: the inverse heat placement problem (2023)
Journal Article
Yang, Y., Billingham, J., Axinte, D., & Liao, Z. (2023). A rational approach to beam path planning in additive manufacturing: the inverse heat placement problem. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 479(2270), Article 20220386. https://doi.org/10.1098/rspa.2022.0386

High demand for components with complex geometries at macro and micro levels drives the development of additive manufacturing (AM). However, the scientific basis for designing energy beam scanning strategies (e.g. beam scanning speed, beam path, beam... Read More about A rational approach to beam path planning in additive manufacturing: the inverse heat placement problem.

On modelling coolant penetration into the microchannels at the tool-workpiece interface (2022)
Journal Article
Wei, W., Robles-Linares, J. A., Liao, Z., Wang, Z., Luna, G. G., Billingham, J., & Axinte, D. (2022). On modelling coolant penetration into the microchannels at the tool-workpiece interface. Journal of Manufacturing Processes, 84, 43-54. https://doi.org/10.1016/j.jmapro.2022.09.044

A network of microchannels is formed at the interface between the cutting tool and the workpiece during machining due to their rough surface structures. The penetration of coolant into these microchannels has a great effect on the machined surface qu... Read More about On modelling coolant penetration into the microchannels at the tool-workpiece interface.

Geometrical modelling of pulsed laser ablation of high performance metallic alloys (2019)
Journal Article
Cha, D., Axinte, D., & Billingham, J. (2019). Geometrical modelling of pulsed laser ablation of high performance metallic alloys. International Journal of Machine Tools and Manufacture, 141, 78-88. https://doi.org/10.1016/j.ijmachtools.2019.04.004

Modelling of Pulsed Laser Ablation (PLA) for the prediction of complex geometries has generally achieved limited success when aimed at large structures resulting from a high number of overlapped pulses, in particular for the ablation of metallic mate... Read More about Geometrical modelling of pulsed laser ablation of high performance metallic alloys.

On modelling of laser assisted machining: forward and inverse problems for heat placement control (2018)
Journal Article
Shang, Z., Liao, Z., Sarasua, J. A., Billingham, J., & Axinte, D. (2019). On modelling of laser assisted machining: forward and inverse problems for heat placement control. International Journal of Machine Tools and Manufacture, 138, 36-50. https://doi.org/10.1016/j.ijmachtools.2018.12.001

Laser assisted machining (LAM) is one of the most efficient ways to improve the machinability of difficult-to-cut materials (e.g. Nickel-based superalloys). In the conventional LAM process, the laser beam is focused ahead of the cutting area at a fix... Read More about On modelling of laser assisted machining: forward and inverse problems for heat placement control.

Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond (2017)
Journal Article
Cadot, G. B., Thomas, K., Best, J. P., Taylor, A., Michler, J., Axinte, D., & Billingham, J. (2018). Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond. Carbon, 127, 349-365. https://doi.org/10.1016/j.carbon.2017.10.030

Experiments and theory are employed to investigate the thermal damage induced by infra-red nanosecond pulses in atmospheric air into a boron-doped diamond target. Micro-Raman spectroscopy, Transmission Electron Microscopy (TEM) analysis and surface t... Read More about Investigation of the microstructure change due to phase transition in nanosecond pulsed laser processing of diamond.

New models for energy beam machining enable accurate generation of freeforms (2017)
Journal Article
Axinte, D. A., Billingham, J., & Guillerna, A. B. (in press). New models for energy beam machining enable accurate generation of freeforms. Science Advances, 3(9), Article e1701201. https://doi.org/10.1126/sciadv.1701201

We demonstrate that, despite differences in their nature, many energy beam controlled-depth machining processes (e.g. waterjet, pulsed laser, focused ion beam) can be modelled using the same mathematical framework – a partial differential evolution e... Read More about New models for energy beam machining enable accurate generation of freeforms.

Waterjet and laser etching: the nonlinear inverse problem (2017)
Journal Article
Bilbao Guillerna, A., Axinte, D. A., Billingham, J., & Cadot, G. (2017). Waterjet and laser etching: the nonlinear inverse problem. Royal Society Open Science, 4(161031), https://doi.org/10.1098/rsos.161031

In waterjet and laser milling, material is removed from a solid surface in a succession of layers to create a new shape, in a depth-controlled manner. The inverse problem consists of defining the control parameters, in particular, the two-dimensional... Read More about Waterjet and laser etching: the nonlinear inverse problem.

A study of surface swelling caused by graphitisation during pulsed laser ablation of carbon allotrope with high content of sp ³ bounds (2017)
Journal Article
Cadot, G., Billingham, J., & Axinte, D. A. (in press). A study of surface swelling caused by graphitisation during pulsed laser ablation of carbon allotrope with high content of sp ³ bounds. Journal of Physics D: Applied Physics, 50(24), https://doi.org/10.1088/1361-6463/aa70fe

Experiments and theory are employed to investigate the laser ablation of boron doped diamond and tetrahedral amorphous carbon using nanosecond pulses. For a single pulse at low values of fluence, the laser induces a swelling of the surface due to gra... Read More about A study of surface swelling caused by graphitisation during pulsed laser ablation of carbon allotrope with high content of sp ³ bounds.

Continuous trench, pulsed laser ablation for micro-machining applications (2016)
Journal Article
Cadot, G., Axinte, D. A., & Billingham, J. (2016). Continuous trench, pulsed laser ablation for micro-machining applications. International Journal of Machine Tools and Manufacture, 107, https://doi.org/10.1016/j.ijmachtools.2016.04.011

The generation of controlled 3D micro-features by pulsed laser ablation in various materials requires an understanding of the material's temporal and energetic response to the laser beam. The key enabler of pulsed laser ablation for micro-machining i... Read More about Continuous trench, pulsed laser ablation for micro-machining applications.

Stochastic simplified modelling of abrasive waterjet footprints (2016)
Journal Article
Torrubia, P. L., Billingham, J., & Axinte, D. A. (2016). Stochastic simplified modelling of abrasive waterjet footprints. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2186), https://doi.org/10.1098/rspa.2015.0836

Abrasive micro-waterjet processing is a non-conventional machining method that can be used to manufacture complex shapes in difficult-to-cut materials. Predicting the effect of the jet on the surface for a given set of machine parameters is a key ele... Read More about Stochastic simplified modelling of abrasive waterjet footprints.

The linear inverse problem in energy beam processing with an application to abrasive waterjet machining (2015)
Journal Article
Axinte, D., Bilbao Guillerna, A., & Billingham, J. (2015). The linear inverse problem in energy beam processing with an application to abrasive waterjet machining. International Journal of Machine Tools and Manufacture, 99, 34-42. https://doi.org/10.1016/j.ijmachtools.2015.09.006

© 2015 The Authors. Published by Elsevier Ltd. The linear inverse problem for energy beam processing, in which a desired etched profile is known and a trajectory of the beam that will create it must be found, is studied in this paper. As an example,... Read More about The linear inverse problem in energy beam processing with an application to abrasive waterjet machining.