Skip to main content

Research Repository

Advanced Search

Miss ELENA BOTO's Outputs (32)

A tool for functional brain imaging with lifespan compliance (2019)
Journal Article
Hill, R. M., Boto, E., Holmes, N., Hartley, C., Seedat, Z. A., Leggett, J., Roberts, G., Shah, V., Tierney, T. M., Woolrich, M. W., Stagg, C. J., Barnes, G. R., Bowtell, R. R., Slater, R., & Brookes, M. J. (2019). A tool for functional brain imaging with lifespan compliance. Nature Communications, 10, Article 4785. https://doi.org/10.1038/s41467-019-12486-x

The human brain undergoes significant functional and structural changes in the first decades of life, as the foundations for human cognition are laid down. However, non-invasive imaging techniques to investigate brain function throughout neurodevelop... Read More about A tool for functional brain imaging with lifespan compliance.

Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography (2019)
Journal Article
Holmes, N., Tierney, T. M., Leggett, J., Boto, E., Mellor, S., Roberts, G., Hill, R. M., Shah, V., Barnes, G. R., Brookes, M. J., & Bowtell, R. (2019). Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography. Scientific Reports, 9, Article 14196. https://doi.org/10.1038/s41598-019-50697-w

To allow wearable magnetoencephalography (MEG) recordings to be made on unconstrained subjects the spatially inhomogeneous remnant magnetic field inside the magnetically shielded room (MSR) must be nulled. Previously, a large bi-planar coil system wh... Read More about Balanced, bi-planar magnetic field and field gradient coils for field compensation in wearable magnetoencephalography.

Data‐driven model optimization for optically pumped magnetometer sensor arrays (2019)
Journal Article
Duque‐Muñoz, L., Tierney, T. M., Meyer, S. S., Boto, E., Holmes, N., Roberts, G., Leggett, J., Vargas‐Bonilla, J. F., Bowtell, R., Brookes, M. J., López, J. D., & Barnes, G. R. (2019). Data‐driven model optimization for optically pumped magnetometer sensor arrays. Human Brain Mapping, 40(15), 4357-4369. https://doi.org/10.1002/hbm.24707

© 2019 The Authors. Human Brain Mapping published by Wiley Periodicals, Inc. Optically pumped magnetometers (OPMs) have reached sensitivity levels that make them viable portable alternatives to traditional superconducting technology for magnetoenceph... Read More about Data‐driven model optimization for optically pumped magnetometer sensor arrays.

Towards OPM-MEG in a virtual reality environment (2019)
Journal Article
Roberts, G., Holmes, N., Alexander, N., Boto, E., Leggett, J., Hill, R. M., Shah, V., Rea, M., Vaughan, R., Maguire, E. A., Kessler, K., Beebe, S., Fromhold, M., Barnes, G. R., Bowtell, R., & Brookes, M. J. (2019). Towards OPM-MEG in a virtual reality environment. NeuroImage, 199, 408-417. https://doi.org/10.1016/j.neuroimage.2019.06.010

Virtual reality (VR) provides an immersive environment in which a participant can experience a feeling of presence in a virtual world. Such environments generate strong emotional and physical responses and have been used for wide-ranging applications... Read More about Towards OPM-MEG in a virtual reality environment.

Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography (2019)
Journal Article
Tierney, T. M., Holmes, N., Mellor, S., López, J. D., Roberts, G., Hill, R. M., Boto, E., Leggett, J., Shah, V., Brookes, M. J., Bowtell, R., & Barnes, G. R. (2019). Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography. NeuroImage, 199, 598-608. https://doi.org/10.1016/j.neuroimage.2019.05.063

Optically Pumped Magnetometers (OPMs) have emerged as a viable and wearable alternative to cryogenic, superconducting MEG systems. This new generation of sensors has the advantage of not requiring cryogenic cooling and as a result can be flexibly pla... Read More about Optically pumped magnetometers: From quantum origins to multi-channel magnetoencephalography.

Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function (2018)
Journal Article
Tierney, T. M., Holmes, N., Meyer, S. S., Boto, E., Roberts, G., Leggett, J., Buck, S., Duque-Muñoz, L., Litvak, V., Bestmann, S., Baldeweg, T., Bowtell, R. W., Brookes, M. J., & Barnes, G. R. (2018). Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function. NeuroImage, 181, 513-520. https://doi.org/10.1016/j.neuroimage.2018.07.035

Recent work has demonstrated that Optically Pumped Magnetometers (OPMs) can be utilised to create a wearable Magnetoencephalography (MEG) system that is motion robust. In this study, we use this system to map eloquent cortex using a clinically valida... Read More about Cognitive neuroscience using wearable magnetometer arrays: Non-invasive assessment of language function.

A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography (2018)
Journal Article
Holmes, N., Leggett, J., Boto, E., Roberts, G., Hill, R. M., Tierney, T. M., Shah, V., Barnes, G. R., Brookes, M. J., & Bowtell, R. (2018). A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography. NeuroImage, 181, 760-774. https://doi.org/10.1016/j.neuroimage.2018.07.028

Small, commercially-available Optically Pumped Magnetometers (OPMs) can be used to construct a wearable Magnetoencephalography (MEG) system that allows large head movements to be made during recording. The small dynamic range of these sensors however... Read More about A bi-planar coil system for nulling background magnetic fields in scalp mounted magnetoencephalography.

Moving magnetoencephalography towards real-world applications with a wearable system (2018)
Journal Article
Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S. S., Duque Muñoz, L., Mullinger, K. J., Tierney, T. M., Bestmann, S., Barnes, G. R., Bowtell, R. W., & Brookes, M. J. (2018). Moving magnetoencephalography towards real-world applications with a wearable system. Nature, 555, 657-661. https://doi.org/10.1038/nature26147

Imaging human brain function with techniques such as magnetoencephalography1 (MEG) typically requires a subject to perform tasks whilst their head remains still within a restrictive scanner. This artificial environment makes the technique inaccessibl... Read More about Moving magnetoencephalography towards real-world applications with a wearable system.

A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers (2017)
Journal Article
Boto, E., Meyer, S. S., Shah, V., Alem, O., Knappe, S., Kruger, P., Fromhold, T. M., Lim, M., Glover, P. M., Morris, P. G., Bowtell, R., Barnes, G. R., & Brookes, M. J. (2017). A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers. NeuroImage, 149, 404-414. https://doi.org/10.1016/j.neuroimage.2017.01.034

© 2017 The Authors Advances in the field of quantum sensing mean that magnetic field sensors, operating at room temperature, are now able to achieve sensitivity similar to that of cryogenically cooled devices (SQUIDs). This means that room temperatur... Read More about A new generation of magnetoencephalography: Room temperature measurements using optically-pumped magnetometers.

Optimising experimental design for MEG resting state functional connectivity measurement (2016)
Journal Article
Liuzzi, L., Gascoyne, L. E., Tewarie, P. K., Barratt, E. L., Boto, E., & Brookes, M. J. (2017). Optimising experimental design for MEG resting state functional connectivity measurement. NeuroImage, 155, 565-576. https://doi.org/10.1016/j.neuroimage.2016.11.064

The study of functional connectivity using magnetoencephalography (MEG) is an expanding area of neuroimaging, and adds an extra dimension to the more common assessments made using fMRI. The importance of such metrics is growing, with recent demonstra... Read More about Optimising experimental design for MEG resting state functional connectivity measurement.

On the potential of a new generation of magnetometers for MEG: A beamformer simulation study (2016)
Journal Article
Boto, E., Bowtell, R. W., Kruger, P., Fromhold, T. M., Morris, P. G., Meyer, S. S., Barnes, G. R., & Brookes, M. J. (2016). On the potential of a new generation of magnetometers for MEG: A beamformer simulation study. PLoS ONE, 11(8), Article e0157655. https://doi.org/10.1371/journal.pone.0157655

Magnetoencephalography (MEG) is a sophisticated tool which yields rich information on the spatial, spectral and temporal signatures of human brain function. Despite unique potential, MEG is limited by a low signal-to-noise ratio (SNR) which is caused... Read More about On the potential of a new generation of magnetometers for MEG: A beamformer simulation study.