Dr MICHAEL POUND Michael.Pound@nottingham.ac.uk
ASSOCIATE PROFESSOR
AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping
Pound, Michael P.; Fozard, Susan; Torres Torres, Mercedes; Forde, Brian G.; French, Andrew P.
Authors
Susan Fozard
Mercedes Torres Torres
Brian G. Forde
Professor ANDREW FRENCH andrew.p.french@nottingham.ac.uk
PROFESSOR OF COMPUTER SCIENCE
Abstract
Background: Computer-based phenotyping of plants has risen in importance in recent years. Whilst much software has been written to aid phenotyping using image analysis, to date the vast majority has been only semi-automatic. However, such interaction is not desirable in high throughput approaches. Here, we present a system designed to analyse plant images in a completely automated manner, allowing genuine high throughput measurement of root traits. To do this we introduce a new set of proxy traits.
Results: We test the system on a new, automated image capture system, the Microphenotron, which is able to image many 1000s of roots/h. A simple experiment is presented, treating the plants with differing chemical conditions to produce different phenotypes. The automated imaging setup and the new software tool was used to measure proxy traits in each well. A correlation matrix was calculated across automated and manual measures, as a validation. Some particular proxy measures are very highly correlated with the manual measures (e.g. proxy length to manual length, r2 > 0.9). This suggests that while the automated measures are not directly equivalent to classic manual measures, they can be used to indicate phenotypic differences (hence the term, proxy). In addition, the raw discriminative power of the new proxy traits was examined. Principal component analysis was calculated across all proxy measures over two phenotypically-different groups of plants. Many of the proxy traits can be used to separate the data in the two conditions.
Conclusion: The new proxy traits proposed tend to correlate well with equivalent manual measures, where these exist. Additionally, the new measures display strong discriminative power. It is suggested that for particular phenotypic differences, different traits will be relevant, and not all will have meaningful manual equivalent measures. However, approaches such as PCA can be used to interrogate the resulting data to identify differences between datasets. Select images can then be carefully manually inspected if the nature of the precise differences is required. We suggest such flexible measurement approaches are necessary for fully automated, high throughput systems such as the Microphenotron.
Citation
Pound, M. P., Fozard, S., Torres Torres, M., Forde, B. G., & French, A. P. (2017). AutoRoot: open-source software employing a novel image analysis approach to support fully-automated plant phenotyping. Plant Methods, 13(1), Article 12. https://doi.org/10.1186/s13007-017-0161-y
Journal Article Type | Article |
---|---|
Acceptance Date | Feb 22, 2017 |
Publication Date | Mar 8, 2017 |
Deposit Date | Mar 9, 2017 |
Publicly Available Date | Mar 9, 2017 |
Journal | Plant Methods |
Electronic ISSN | 1746-4811 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 13 |
Issue | 1 |
Article Number | 12 |
DOI | https://doi.org/10.1186/s13007-017-0161-y |
Public URL | https://nottingham-repository.worktribe.com/output/849601 |
Publisher URL | http://plantmethods.biomedcentral.com/articles/10.1186/s13007-017-0161-y |
Contract Date | Mar 9, 2017 |
Files
art%3A10.1186%2Fs13007-017-0161-y.pdf
(1.8 Mb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by/4.0/
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by/4.0
You might also like
Addressing multiple salient object detection via dual-space long-range dependencies
(2023)
Journal Article
Domain Adaptation of Synthetic Images for Wheat Head Detection
(2021)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search