Luca Bertola
Superconducting electromagnetic launch system for civil aircraft
Bertola, Luca; Cox, Thomas; Wheeler, Patrick; Garvey, Seamus D.; Morvan, Herve
Authors
Dr Tom Cox T.Cox@nottingham.ac.uk
ASSOCIATE PROFESSOR
Professor PATRICK WHEELER pat.wheeler@nottingham.ac.uk
PROFESSOR OF POWER ELECTRONIC SYSTEMS
Seamus D. Garvey
Herve Morvan
Abstract
This paper considers the feasibility of different superconducting technologies for electromagnetic launch (EML) to assist civil aircraft take-off. EML has the potential of reducing the required runway length by increasing aircraft acceleration. Expensive airport extensions to face constant air traffic growth could be avoided by allowing large aircraft to operate from short runways at small airports. The new system positively affects total aircraft noise and exhaust emissions near airports and improves overall aircraft efficiency through reducing engine design constraints. Superconducting Linear Synchronous Motors (SCLSMs) can be exploited to deliver the required take-off thrust with electromagnetic performance that cannot be easily achieved by conventional electrical machines. The sizing procedure of a SCLSM able to launch A320 in weight is presented. Electromagnetic and thermal aspects of the machine are taken into account including the modelling of ac losses in superconductors and thermal insulation. The metallic high temperature superconductor (HTS) magnesium diboride (MgB2) is used and operated at 20 K, the boiling temperature of liquid hydrogen. With modern manufacturing technology, multifilament MgB2 wires appear to be the most cost-effective solution for this application. Finally the impact of the cryocooler efficiency on the machine performance is evaluated.
Citation
Bertola, L., Cox, T., Wheeler, P., Garvey, S. D., & Morvan, H. (2016). Superconducting electromagnetic launch system for civil aircraft. IEEE Transactions on Applied Superconductivity, 26(8), https://doi.org/10.1109/TASC.2016.2598772
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 4, 2016 |
Online Publication Date | Aug 10, 2016 |
Publication Date | Dec 31, 2016 |
Deposit Date | Nov 16, 2016 |
Publicly Available Date | Nov 16, 2016 |
Journal | IEEE Transactions on Applied Superconductivity |
Print ISSN | 1051-8223 |
Electronic ISSN | 1558-2515 |
Publisher | Institute of Electrical and Electronics Engineers |
Peer Reviewed | Peer Reviewed |
Volume | 26 |
Issue | 8 |
DOI | https://doi.org/10.1109/TASC.2016.2598772 |
Keywords | Biot-Savart law, Civil aircraft, Electromagnetic catapult, EML/EMLs, High temperature Superconductor, Linear synchronous motor, Magnesium diboride, Superconducting coil, Superconducting linear accelerator |
Public URL | https://nottingham-repository.worktribe.com/output/831108 |
Publisher URL | http://ieeexplore.ieee.org/document/7539345/ |
Additional Information | c2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works |
Contract Date | Nov 16, 2016 |
Files
Superconducting Electromagnetic Launch System for Civil Aircraft.pdf
(1.4 Mb)
PDF
You might also like
A directly charged thermal store for compressed air energy storage systems
(2023)
Journal Article
Comparative Analysis of Isochoric and Isobaric Adiabatic Compressed Air Energy Storage
(2023)
Journal Article
The effect of a nuclear baseload in a zero-carbon electricity system: An analysis for the UK
(2023)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search