David G. Cerdeno
How to calculate dark matter direct detection exclusion limits that are consistent with gamma rays from annihilation in the Milky Way halo
Cerdeno, David G.; Fornasa, Mattia; Green, Anne M.; Peiro, Miguel
Authors
Abstract
When comparing constraints on the weakly interacting massive particle (WIMP) properties from direct and indirect detection experiments it is crucial that the assumptions made about the dark matter (DM) distribution are realistic and consistent. For instance, if the Fermi LAT Galactic center GeV gamma-ray excess was due to WIMP annihilation, its morphology would be incompatible with the standard halo model that is usually used to interpret data from direct detection experiments. In this article, we calculate exclusion limits from direct detection experiments using self-consistent velocity distributions, derived from mass models of the Milky Way where the DM halo has a generalized Navarro-Frenk-White profile. We use two different methods to make the mass model compatible with a DM interpretation of the Galactic center gamma-ray excess. First, we fix the inner slope of the DM density profile to the value that best fits the morphology of the excess. Second, we allow the inner slope to vary and include the morphology of the excess in the data sets used to constrain the gravitational potential of the Milky Way. The resulting direct detection limits differ significantly from those derived using the standard halo model, in particular for light WIMPs, due to the differences in both the local DM density and velocity distribution.
Citation
Cerdeno, D. G., Fornasa, M., Green, A. M., & Peiro, M. (2016). How to calculate dark matter direct detection exclusion limits that are consistent with gamma rays from annihilation in the Milky Way halo. Physical Review D, 94, Article 043516. https://doi.org/10.1103/PhysRevD.94.043516
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 3, 2016 |
Publication Date | Aug 15, 2016 |
Deposit Date | Apr 10, 2017 |
Publicly Available Date | Apr 10, 2017 |
Journal | Physical Review D |
Print ISSN | 2470-0010 |
Electronic ISSN | 2470-0029 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 94 |
Article Number | 043516 |
DOI | https://doi.org/10.1103/PhysRevD.94.043516 |
Public URL | https://nottingham-repository.worktribe.com/output/805535 |
Publisher URL | https://journals.aps.org/prd/abstract/10.1103/PhysRevD.94.043516 |
Contract Date | Apr 10, 2017 |
Files
1605.05185(1).pdf
(293 Kb)
PDF
You might also like
How open is the asteroid-mass primordial black hole window?
(2024)
Journal Article
Primordial black holes as a dark matter candidate - a brief overview
(2024)
Journal Article
Modelling uncertainties in wide binary constraints on primordial black holes
(2023)
Journal Article
Effect of clustering on primordial black hole microlensing constraints
(2022)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search