Hu Zhou
Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies
Zhou, Hu; Fang, Huan; Mooney, Sacha Jon; Peng, Xinhua
Authors
Huan Fang
Professor SACHA MOONEY sacha.mooney@nottingham.ac.uk
PROFESSOR OF SOIL PHYSICS
Xinhua Peng
Abstract
The soil structure of paddy soil is very dynamic from the aggregate to the pedon scale because of intensive anthropogenic management strategies. In this study, we tested the hypothesis that long-term inorganic and organic fertilizations can affect soil structure at different scales. Microstructure assessed by soil aggregates (3–5 mm in diameter) and macrostructure assessed by small soil cores (CoreS) (5 cm in diameter, 5 cm in height) and large soil cores (CoreL) (10 cm in diameter, 10 cm in height) were sampled from three long-term fertilization treatments, including no fertilizer (CK), application of inorganic fertilizer (NPK), and a combination of inorganic fertilizer and organic manure (NPKOM), established in 1982. They were scanned at two scales with two types of micro-computed tomography (micro-CT) and quantified using image analysis. Results showed that relative to CK treatment, long-term NPKOM fertilization increased soil organic C (SOC) by 28% and available water content (AWC) by 20%, but decreased soil bulk density by 0.2 g cm− 3 whereas NPK showed no difference. Soils under CK and NPK treatments exhibited an identical dense structure at both aggregate and core scales in which pores were mainly cracks resulting from shrink/swell processes, and showed no significant difference in porosity and size distribution of the CT-identified pores (> 3.7 μm). Compared with the CK treatment, the soil in the NPKOM treatment had greater intra- and inter-aggregate pores, and increased porosity by 58.3%, 144.9%, and 65.9% at aggregate, CoreS, and CoreL scales, respectively. These were attributed to the biopores formed from decayed roots, stubble, and organic manures as a result of increased yields and direct amendment of organic manure. Overall, this study demonstrates that organic fertilization can improve the physical qualities of paddy soils across different scales but inorganic fertilization in isolation does not.
Citation
Zhou, H., Fang, H., Mooney, S. J., & Peng, X. (2016). Effects of long-term inorganic and organic fertilizations on the soil micro and macro structures of rice paddies. Geoderma, 266, 66-74. https://doi.org/10.1016/j.geoderma.2015.12.007
Journal Article Type | Article |
---|---|
Acceptance Date | Dec 10, 2015 |
Online Publication Date | Dec 22, 2015 |
Publication Date | Mar 15, 2016 |
Deposit Date | Mar 9, 2017 |
Publicly Available Date | Mar 9, 2017 |
Journal | Geoderma |
Print ISSN | 0016-7061 |
Electronic ISSN | 1872-6259 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 266 |
Pages | 66-74 |
DOI | https://doi.org/10.1016/j.geoderma.2015.12.007 |
Keywords | Paddy soil; Soil structure; Aggregate; Pore; Micro-CT; Fertilization |
Public URL | https://nottingham-repository.worktribe.com/output/780473 |
Publisher URL | http://www.sciencedirect.com/science/article/pii/S0016706115301592 |
Contract Date | Mar 9, 2017 |
Files
GEOD102621R1with_comments_final_20151202.pdf
(590 Kb)
PDF
Publisher Licence URL
https://creativecommons.org/licenses/by-nc-nd/4.0/
Copyright Statement
Copyright information regarding this work can be found at the following address: http://creativecommons.org/licenses/by-nc-nd/4.0
You might also like
Root-soil-microbiome management is key to the success of Regenerative Agriculture
(2024)
Journal Article
Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search