Himadri Shekhar Dhar
Characterizing non-Markovianity via quantum interferometric power
Dhar, Himadri Shekhar; Bera, Manabendra Nath; Adesso, Gerardo
Authors
Manabendra Nath Bera
Professor GERARDO ADESSO gerardo.adesso@nottingham.ac.uk
PROFESSOR OF MATHEMATICAL PHYSICS
Abstract
Non-Markovian evolution in open quantum systems is often characterized in terms of the backflow of information from environment to system and is thus an important facet in investigating the performance and robustness of quantum information protocols. In this work, we explore non Markovianity through the breakdown of monotonicity of a metrological figure of merit, called the quantum interferometric power, which is based on the minimal quantum Fisher information obtained by local unitary evolution of one part of the system, and can be interpreted as a quantifier of quantum correlations beyond entanglement. We investigate our proposed non-Markovianity indicator in two relevant examples. First, we consider the action of a single-party dephasing channel on a maximally entangled two-qubit state, by applying the Jamiołkowski Choi isomorphism. We observe that the proposed measure is consistent with established non-Markovianity quantifiers defined using other approaches based on dynamical divisibility, distinguishability, and breakdown of monotonicity for the quantum mutual information. Further, we consider the dynamics of two-qubit Werner states, under the action of a local, single-party amplitude damping channel, and observe that the nonmonotonic evolution of the quantum interferometric power is more robust than the corresponding one for entanglement in capturing the backflow of quantum information associated with the non-Markovian process. Implications for the role of non- Markovianity in quantum metrology and possible extensions to continuous variable systems are discussed.
Citation
Dhar, H. S., Bera, M. N., & Adesso, G. (2015). Characterizing non-Markovianity via quantum interferometric power. Physical Review A, 91(3), https://doi.org/10.1103/PhysRevA.91.032115
Journal Article Type | Article |
---|---|
Acceptance Date | Jan 18, 2015 |
Publication Date | Mar 18, 2015 |
Deposit Date | Oct 11, 2017 |
Publicly Available Date | Oct 11, 2017 |
Journal | Physical Review A |
Print ISSN | 2469-9926 |
Electronic ISSN | 2469-9934 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 91 |
Issue | 3 |
DOI | https://doi.org/10.1103/PhysRevA.91.032115 |
Public URL | https://nottingham-repository.worktribe.com/output/747409 |
Publisher URL | https://journals.aps.org/pra/abstract/10.1103/PhysRevA.91.032115 |
Additional Information | ©2015 American Physical Society |
Contract Date | Oct 11, 2017 |
Files
15PRA_91_032115.pdf
(951 Kb)
PDF
Copyright Statement
Copyright information regarding this work can be found at the following address: http://eprints.nottingham.ac.uk/end_user_agreement.pdf
You might also like
Every quantum helps: Operational advantage of quantum resources beyond convexity
(2024)
Journal Article
A Post-Quantum Associative Memory
(2023)
Journal Article
Fundamental limitations to key distillation from Gaussian states with Gaussian operations
(2023)
Journal Article
GPT4 : The Ultimate Brain
(2022)
Preprint / Working Paper
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search